Patents by Inventor Darrick Niccum

Darrick Niccum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9880097
    Abstract: An apparatus and method for improving aerosol particle characterization and detection accuracy in clean room applications that includes an optical particle sizer that receives a particle containing aerosol sample at a higher flow rate which is operatively coupled to an inertial aerosol concentrator for concentrating particles received from the optical particle sizer and delivering a lower flow rate, particle enriched output. The system further includes an optical sensor for sensing of intrinsic particle fluorescence of the lower, particle-enriched flow, since intrinsic fluorescence is a useful indicator of biological particles and biological particle viability, including bacterial particles. The system as a whole provides a measure derived from a single inlet flow both of total particles and of viable microbial particles based on their spectroscopic properties.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: January 30, 2018
    Assignee: TSI Incorporated
    Inventors: Jim Evenstad, Dahu Qi, Peter P. Hairston, Darrick Niccum
  • Publication number: 20140354976
    Abstract: An apparatus and method for improving aerosol particle characterization and detection accuracy in clean room applications that includes an optical particle sizer that receives a particle containing aerosol sample at a higher flow rate which is operatively coupled to an inertial aerosol concentrator for concentrating particles received from the optical particle sizer and delivering a lower flow rate, particle enriched output. The system further includes an optical sensor for sensing of intrinsic particle fluorescence of the lower, particle-enriched flow, since intrinsic fluorescence is a useful indicator of biological particles and biological particle viability, including bacterial particles. The system as a whole provides a measure derived from a single inlet flow both of total particles and of viable microbial particles based on their spectroscopic properties.
    Type: Application
    Filed: September 18, 2012
    Publication date: December 4, 2014
    Inventors: Jim Evenstad, Dahu Qi, Peter P. Hairston, Darrick Niccum