Patents by Inventor Darryl N. Ventura

Darryl N. Ventura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210134492
    Abstract: A method of treating an elongated conductive element comprises exposing a conductive element sequentially to at least two dopants being different in composition. The dopants may include an acidic dopant and a halogen-based dopant. The conductive element comprises a plurality of carbon nanotubes and has a linear density in a range from about 0.1 tex to about 2.0 tex. The method further comprises mechanically densifying the conductive element. The elongated conductive element comprises at least one carbon nanotube fiber doped with a plurality of p-type dopants comprising at least one acidic dopant and at least one halogen-based dopant. The at least one carbon nanotube fiber has an electrical resistivity equal to or less than about 55 ??·cm and an ultimate tensile strength equal to or greater than about 1 GPa.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Inventors: Valery N. Khabashesku, Alexander Moravsky, Raouf Loutfy, Darryl N. Ventura
  • Patent number: 10927006
    Abstract: A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 23, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10892070
    Abstract: A method of treating an elongated conductive element comprises exposing a conductive element sequentially to at least two dopants being different in composition. The dopants may include an acidic dopant and a halogen-based dopant. The conductive element comprises a plurality of carbon nanotubes and has a linear density in a range from about 0.1 tex to about 2.0 tex. The method further comprises mechanically densifying the conductive element. The elongated conductive element comprises at least one carbon nanotube fiber doped with a plurality of p-type dopants comprising at least one acidic dopant and at least one halogen-based dopant. The at least one carbon nanotube fiber has an electrical resistivity equal to or less than about 55 ??·cm and an ultimate tensile strength equal to or greater than about 1 GPa.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: January 12, 2021
    Assignee: Baker Hughes Oilfield Operations, LLC
    Inventors: Valery N. Khabashesku, Alexander Moravsky, Raouf Loutfy, Darryl N. Ventura
  • Publication number: 20200251256
    Abstract: A method of treating an elongated conductive element comprises exposing a conductive element sequentially to at least two dopants being different in composition. The dopants may include an acidic dopant and a halogen-based dopant. The conductive element comprises a plurality of carbon nanotubes and has a linear density in a range from about 0.1 tex to about 2.0 tex. The method further comprises mechanically densifying the conductive element. The elongated conductive element comprises at least one carbon nanotube fiber doped with a plurality of p-type dopants comprising at least one acidic dopant and at least one halogen-based dopant. The at least one carbon nanotube fiber has an electrical resistivity equal to or less than about 55 ??·cm and an ultimate tensile strength equal to or greater than about 1 GPa.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 6, 2020
    Inventors: Valery N. Khabashesku, Alexander Moravsky, Raouf Loutfy, Darryl N. Ventura
  • Patent number: 10421047
    Abstract: A filter membrane includes carbon nanotubes and carbon nitride nanoparticles. Inter-particle atomic interactions between the carbon nanotubes and the carbon nitride nanoparticles bind the carbon nanotubes and the carbon nitride nanoparticles together. A filter cartridge includes such a filter membrane disposed within an outer housing between a fluid inlet and a fluid outlet such that fluid passing through the outer housing between the fluid inlet and the fluid outlet passes through the filter membrane. Such filter membranes may be formed by dispersing carbon nanotubes and carbon nitride nanoparticles in a liquid to form a suspension, and passing the suspension through a filter to deposit the nanotubes and nanoparticles on the filter. Liquid may be filtered by causing the liquid to pass through such a filter membrane.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 24, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Darryl N. Ventura, Sankaran Murugesan, Oleksandr V. Kuznetsov, Valery N. Khabashesku, Oleg A. Mazyar
  • Patent number: 10247675
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: April 2, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Patent number: 10209193
    Abstract: A method and apparatus for estimating a concentration of chemicals in a fluid flowing in a fluid passage is disclosed. A sample of the fluid is placed on a substrate comprising a first layer of carbon nanotubes and a second layer of metal nanowires. An energy source radiates the fluid sample with electromagnetic radiation at a selected energy level, and a detector measures an energy level of radiation emitted from the fluid sample in response to the electromagnetic radiation. A processor determines a Raman spectrum of the fluid sample from the energy level of the emitted radiation and estimates the concentration of a selected chemical in the fluid sample based on the Raman spectrum.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: February 19, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Darryl N. Ventura, Sankaran Murugesan, Valery N. Khabashesku, Radhika Suresh
  • Publication number: 20180246039
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Patent number: 10060253
    Abstract: A method of determining a condition within a wellbore. The method comprises introducing a tubular member in a wellbore extending through a subterranean formation, the tubular member comprising a downhole article including a deformable material disposed around a surface of the tubular member, electrically conductive elements dispersed within the deformable material. The method includes measuring at least one electrical property of the deformable material. At least one of water ingress into the wellbore or an amount of expansion of the deformable material is determined based on the at least one measured electrical property. Related downhole systems and other related methods are also disclosed.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: August 28, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Valery N. Khabashesku, Nicholas Carrejo, Kevin Holmes, Thomas McClain Scott, Xiuli Wang
  • Publication number: 20180221831
    Abstract: A filter membrane includes carbon nanotubes and carbon nitride nanoparticles. Inter-particle atomic interactions between the carbon nanotubes and the carbon nitride nanoparticles bind the carbon nanotubes and the carbon nitride nanoparticles together. A filter cartridge includes such a filter membrane disposed within an outer housing between a fluid inlet and a fluid outlet such that fluid passing through the outer housing between the fluid inlet and the fluid outlet passes through the filter membrane. Such filter membranes may be formed by dispersing carbon nanotubes and carbon nitride nanoparticles in a liquid to form a suspension, and passing the suspension through a filter to deposit the nanotubes and nanoparticles on the filter. Liquid may be filtered by causing the liquid to pass through such a filter membrane.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 9, 2018
    Inventors: Darryl N. Ventura, Sankaran Murugesan, Oleksandr V. Kuznetsov, Valery N. Khabashesku, Oleg A. Mazyar
  • Publication number: 20180194620
    Abstract: A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 12, 2018
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 9958394
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: May 1, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Publication number: 20180024066
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Application
    Filed: August 15, 2017
    Publication date: January 25, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Publication number: 20170315061
    Abstract: A method and apparatus for estimating a concentration of chemicals in a fluid flowing in a fluid passage is disclosed. A sample of the fluid is placed on a substrate comprising a first layer of carbon nanotubes and a second layer of metal nanowires. An energy source radiates the fluid sample with electromagnetic radiation at a selected energy level, and a detector measures an energy level of radiation emitted from the fluid sample in response to the electromagnetic radiation. A processor determines a Raman spectrum of the fluid sample from the energy level of the emitted radiation and estimates the concentration of a selected chemical in the fluid sample based on the Raman spectrum.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 2, 2017
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Darryl N. Ventura, Sankaran Murugesan, Valery N. Khabashesku, Radhika Suresh
  • Publication number: 20170292366
    Abstract: A method of determining a condition within a wellbore. The method comprises introducing a tubular member in a wellbore extending through a subterranean formation, the tubular member comprising a downhole article including a deformable material disposed around a surface of the tubular member, electrically conductive elements dispersed within the deformable material. The method includes measuring at least one electrical property of the deformable material. At least one of water ingress into the wellbore or an amount of expansion of the deformable material is determined based on the at least one measured electrical property. Related downhole systems and other related methods are also disclosed.
    Type: Application
    Filed: April 11, 2016
    Publication date: October 12, 2017
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Valery N. Khabashesku, Nicholas Carrejo, Kevin Holmes, Thomas McClain Scott, Xiuli Wang
  • Publication number: 20170254170
    Abstract: A deformable downhole article for use in a wellbore includes a tubular component configured for placement in a wellbore, a deformable material disposed around an outer surface of the tubular component, and an electrically conductive element comprising a carbon nanotube (CNT) material bonded to the deformable material. To form such a deformable downhole article, a deformable material is disposed around an outer surface of a tubular component, and an electrically conductive element comprising a carbon nanotube (CNT) material is bonded to the deformable material. In use, the deformable downhole article may be positioned within a wellbore, and the deformable material may be expanded to an expanded state. Expansion of the deformable material may strain the carbon nanotube (CNT) material of the electrically conductive element, and an electrical property of the electrically conductive element may be measured to deduce information about the state of the deformable material.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 7, 2017
    Inventors: Oleg A. Mazyar, Sankaran Murugesan, Valery N. Khabashesku, Darryl N. Ventura, Rostyslav Dolog
  • Publication number: 20170254194
    Abstract: A deformable downhole article for use in a wellbore includes a tubular component configured for placement in a wellbore, a deformable material disposed around an outer surface of the tubular component, and an electrically conductive element comprising a carbon nanotube (CNT) material bonded to the deformable material. To form such a deformable downhole article, a deformable material is disposed around an outer surface of a tubular component, and an electrically conductive element comprising a carbon nanotube (CNT) material is bonded to the deformable material. In use, the deformable downhole article may be positioned within a wellbore, and the deformable material may be expanded to an expanded state. Expansion of the deformable material may strain the carbon nanotube (CNT) material of the electrically conductive element, and an electrical property of the electrically conductive element may be measured to deduce information about the state of the deformable material.
    Type: Application
    Filed: September 15, 2016
    Publication date: September 7, 2017
    Inventors: Oleg A. Mazyar, Sankaran Murugesan, Valery N. Khabashesku, Darryl N. Ventura, Rostyslav Dolog, Leonty A. Tabarovsky