Patents by Inventor Darryl Restaino

Darryl Restaino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7691736
    Abstract: Embodiments of the invention provide a semiconductor device having dielectric material and its method of manufacture. A method comprises a short (?2 sec) flash activation of an ILD surface followed by flowing a precursor such as silane, DEMS, over the activated ILD surface. The precursor reacts with the activated ILD surface thereby selectively protecting the ILD surface. The protected ILD surface is resistant to plasma processing damage. The protected ILD surface eliminates the requirement of using a hard mask to protect a dielectric from plasma damage.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 6, 2010
    Assignee: Infineon Technologies AG
    Inventors: Michael Beck, John A. Fitzsimmons, Karl Hornik, Darryl Restaino
  • Publication number: 20070215842
    Abstract: An aqueous seeding solution of palladium acetate, acetic acid and chloride.
    Type: Application
    Filed: May 22, 2007
    Publication date: September 20, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Darryl Restaino, Donald Canaperi, Judith Rubino, Sean Smith, Richard Henry, James Fluegel, Mahadevaiyer Krishnan
  • Publication number: 20070190804
    Abstract: Embodiments of the invention provide a semiconductor device having dielectric material and its method of manufacture. A method comprises a short (?2 sec) flash activation of an ILD surface followed by flowing a precursor such as silane, DEMS, over the activated ILD surface. The precursor reacts with the activated ILD surface thereby selectively protecting the ILD surface. The protected ILD surface is resistant to plasma processing damage. The protected ILD surface eliminates the requirement of using a hard mask to protect a dielectric from plasma damage.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 16, 2007
    Inventors: Michael Beck, John Fitzsimmons, Karl Hornik, Darryl Restaino
  • Publication number: 20070148958
    Abstract: An interconnect structure in which the adhesion between an upper level low-k dielectric material, such as a material comprising elements of Si, C, O, and H, and an underlying diffusion capping dielectric, such as a material comprising elements of C, Si, N and H, is improved by incorporating an adhesion transition layer between the two dielectric layers. The presence of the adhesion transition layer between the upper level low-k dielectric and the diffusion barrier capping dielectric can reduce the chance of delamination of the interconnect structure during the packaging process. The adhesion transition layer provided herein includes a lower SiOx- or SiON-containing region and an upper C graded region. Methods of forming such a structure, in particularly the adhesion transition layer, are also provided.
    Type: Application
    Filed: August 4, 2006
    Publication date: June 28, 2007
    Inventors: Lawrence Clevenger, Stefanie Chiras, Timothy Dalton, James Demarest, Derren Dunn, Chester Dziobkowski, Philip Flaitz, Michael Lane, James Lloyd, Darryl Restaino, Thomas Shaw, Yun-Yu Wang, Chih-Chao Yang
  • Publication number: 20070128882
    Abstract: A porous low k or ultra low k dielectric film comprising atoms of Si, C, O and H (hereinafter “SiCOH”) in a covalently bonded tri-dimensional network structure having a dielectric constant of less than about 3.0, a higher degree of crystalline bonding interactions, more carbon as methyl termination groups and fewer methylene, —CH2— crosslinking groups than prior art SiCOH dielectrics is provided. The SiCOH dielectric is characterized as having a FTIR spectrum comprising a peak area for CH3+CH2 stretching of less than about 1.40, a peak area for SiH stretching of less than about 0.20, a peak area for SiCH3 bonding of greater than about 2.0, and a peak area for Si—O—Si bonding of greater than about 60%, and a porosity of greater than about 20%.
    Type: Application
    Filed: February 5, 2007
    Publication date: June 7, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Son Nguyen, Sarah Lane, Jia Lee, Kensaku Ida, Darryl Restaino, Takeshi Nogami
  • Publication number: 20060202311
    Abstract: A low k dielectric stack having an effective dielectric constant k, of about 3.0 or less, in which the mechanical properties of the stack are improved by introducing at least one nanolayer into the dielectric stack. The improvement in mechanical properties is achieved without significantly increasing the dielectric constant of the films within the stack and without the need of subjecting the inventive dielectric stack to any post treatment steps. Specifically, the present invention provides a low k dielectric stack that comprises at least one low k dielectric material and at least one nanolayer present within the at least one low k dielectric material.
    Type: Application
    Filed: March 8, 2005
    Publication date: September 14, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Son Nguyen, Sarah Lane, Eric Liniger, Kensaku Ida, Darryl Restaino
  • Publication number: 20060189153
    Abstract: A semiconductor device structure and method for manufacture includes a substrate having a top first layer; a second thin transition layer located on top of the first layer; and, a third layer located on top of the transition layer, wherein the second thin transition layer provides strong adhesion and cohesive strength between the first and third layers of the structure. Additionally, a semiconductor device structure and method for manufacture includes an insulating structure comprising a multitude of dielectric and conductive layers with respective transition bonding layers disposed to enhance interfacial strength among the different layers. Further, an electronic device structure incorporates layers of insulating and conductive materials as intralevel or interlevel dielectrics in a back-end-of-the-line (“BEOL”) wiring structure in which the interfacial strength between different pairs of dielectric films is enhanced by a thin intermediate transition bonding layer.
    Type: Application
    Filed: April 19, 2006
    Publication date: August 24, 2006
    Applicant: International Business Machines Corporation
    Inventors: Daniel Edelstein, Alfred Grill, Vishnubhai Patel, Darryl Restaino
  • Publication number: 20060183345
    Abstract: A porous low k or ultra low k dielectric film comprising atoms of Si, C, O and H (hereinafter “SiCOH”) in a covalently bonded tri-dimensional network structure having a dielectric constant of less than about 3.0, a higher degree of crystalline bonding interactions, more carbon as methyl termination groups and fewer methylene, —CH2— crosslinking groups than prior art SiCOH dielectrics is provided. The SiCOH dielectric is characterized as having a FTIR spectrum comprising a peak area for CH3+CH2 stretching of less than about 1.40, a peak area for SiH stretching of less than about 0.20, a peak area for SiCH3 bonding of greater than about 2.0, and a peak area for Si—O—Si bonding of greater than about 60%, and a porosity of greater than about 20%.
    Type: Application
    Filed: February 16, 2005
    Publication date: August 17, 2006
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, SONY CORPORATION
    Inventors: Son Nguyen, Sarah Lane, Jia Lee, Kensaku Ida, Darryl Restaino, Takeshi Nogami
  • Publication number: 20060134911
    Abstract: A method to electrolessly plate a CoWP alloy on copper in a reproducible manner that is effective for a manufacturable process. In the method, a seed layer of palladium (Pd) is deposited on the copper by an aqueous seeding solution of palladium acetate, acetic acid and chloride. Thereafter, a complexing solution is applied to remove any Pd ions which are adsorbed on surfaces other than the copper. Finally, a plating solution of cobalt (Co), tungsten (W) and phosphorous (P) is applied to the copper so as to deposit a layer of CoWP on the Pd seed and copper.
    Type: Application
    Filed: December 22, 2004
    Publication date: June 22, 2006
    Inventors: Darryl Restaino, Donald Canaperi, Judith Rubino, Sean Smith, Richard Henry, James Fluegel, Mahadevaiyer Krishnan
  • Publication number: 20050230831
    Abstract: An interconnect structure in which the adhesion between an upper level low-k dielectric material, such as a material comprising elements of Si, C, O, and H, and an underlying diffusion capping dielectric, such as a material comprising elements of C, Si, N and H, is improved by incorporating an adhesion transition layer between the two dielectric layers. The presence of the adhesion transition layer between the upper level low-k dielectric and the diffusion barrier capping dielectric can reduce the chance of delamination of the interconnect structure during the packaging process. The adhesion transition layer provided herein includes a lower SiOx— or SiON-containing region and an upper C graded region. Methods of forming such a structure, in particularly the adhesion transition layer, are also provided.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 20, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence Clevenger, Stefanie Chiras, Timothy Dalton, James Demarest, Derren Dunn, Chester Dziobkowski, Philip Flaitz, Michael Lane, James Lloyd, Darryl Restaino, Thomas Shaw, Yun-Yu Wang, Chih-Chao Yang
  • Publication number: 20050087490
    Abstract: A process of removing impurities from a cured low dielectric constant organic polymeric film disposed on a semiconductor device. The process involves disposing a low dielectric constant curable organic polymeric film on an electrically conductive surface of a semiconductor device. The organic polymeric film is cured on the semiconductor device and thereupon contacted with supercritical carbon dioxide, optionally in the presence of at least one cosolvent.
    Type: Application
    Filed: October 28, 2003
    Publication date: April 28, 2005
    Applicant: International Business Machines Corporation
    Inventors: Mark Chace, Jeffrey Hedrick, Habib Hichri, Keith Pope, Jia Lee, Kelly Malone, Kenneth McCullough, Wayne Moreau, Darryl Restaino, Shahab Siddiqui
  • Publication number: 20050059258
    Abstract: A semiconductor device structure and method for manufacture includes a substrate having a top first layer; a second thin transition layer located on top of the first layer; and, a third layer located on top of the transition layer, wherein the second thin transition layer provides strong adhesion and cohesive strength between the first and third layers of the structure. Additionally, a semiconductor device structure and method for manufacture includes an insulating structure comprising a multitude of dielectric and conductive layers with respective transition bonding layers disposed to enhance interfacial strength among the different layers. Further, an electronic device structure incorporates layers of insulating and conductive materials as intralevel or interlevel dielectrics in a back-end-of-the-line (“BEOL”) wiring structure in which the interfacial strength between different pairs of dielectric films is enhanced by a thin intermediate transition bonding layer.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 17, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel Edelstein, Alfred Grill, Vishnubhai Patel, Darryl Restaino
  • Publication number: 20050006242
    Abstract: An improved method of stabilizing wet chemical baths is disclosed. Typically such baths are used in processes for treating workpieces, for example, plating processes for plating metal onto substrates. In particular, the present invention relates to copper plating baths. More particularly, the present invention relates to the stability of copper plating baths. More particularly, the present invention relates to prevention of void formation by monitoring the accumulation of deleterious by-products in copper plating baths.
    Type: Application
    Filed: July 10, 2003
    Publication date: January 13, 2005
    Applicant: International Business Machines Corporation
    Inventors: Panayotis Andricacos, Dean Chung, Hariklia Deligianni, James Fluegel, Keith Kwietniak, Peter Locke, Darryl Restaino, Soon-Cheon Seo, Philippe Vereecken, Erick Walton
  • Patent number: 6806182
    Abstract: Application of an adhesion promoter to a cap layer and oxidation of the adhesion promoter prior to deposition of an organic interlevel dielectric thereon reduces via resistance problems during thermal cycles of semiconductor wafers embodying multiple levels of metal and organic interlevel dielectrics.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: October 19, 2004
    Assignees: International Business Machines Corporation, Infineon Technologies, AG, United Microelectronics Co.
    Inventors: Darryl Restaino, Shahab Siddiqui, Erdem Kaltalioglu, Delores Bennett, Chih-Chih Liu, Hsueh-Chung Chen, Tong-Yu Chen, Gwo-Shii Yang, Chiung-Sheng Hsiung
  • Publication number: 20030207559
    Abstract: Application of an adhesion promoter to a cap layer and oxidation of the adhesion promoter prior to deposition of an organic interlevel dielectric thereon reduces via resistance problems during thermal cycles of semiconductor wafers embodying multiple levels of metal and organic interlevel dielectrics.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 6, 2003
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, Infineon Technologies North America Corp., United Microelectronics Co.
    Inventors: Darryl Restaino, Shahab Siddiqui, Erdem Kaltalioglu, Delores Bennett, C. C. Liu, Hsueh-Chung Chen, Tong-Yu Chen, Gwo-Shii Yang, Chiung-Sheng Hsiung
  • Patent number: 6140236
    Abstract: A metal interconnect layer that fills in a via hole formed by first depositing a first Al--Cu film on the sidewalls of the via hole at a low temperature and a low sputtering power and then depositing a second Al--Cu film on the first Al--Cu film at a high temperature and high sputtering power. Sputtering is performed in two steps at low and high temperatures within the same sputtering chamber. The deposition at low temperature and low sputtering power provides good coverage in the via hole, and the deposition at high temperature and high sputtering power reduces the process time.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: October 31, 2000
    Assignees: Kabushiki Kaisha Toshiba, Siemens Microelectronics, Inc., International Business Machines Corporation
    Inventors: Darryl Restaino, Chi-Hua Yang, Hans W. Poetzlberger, Tomio Katata, Hideaki Aochi
  • Patent number: 5872694
    Abstract: Method and apparatus are provided for determining a warpage of a wafer (14) for providing a minimum clamping voltage to an electrostatic chuck (ESC) when the wafer is subsequently processed thereon. The apparatus includes an electrostatic chuck (12, 120) and a control arrangement (16, 18, 20). The electrostatic chuck includes a clamping surface (13, 130) for clamping a wafer thereto by a clamping force that is dependent on a clamping voltage applied to the electrostatic chuck. The control arrangement is used to detect an inherent warpage in the wafer prior to a processing of that wafer, and determine a minimum clamping voltage from the measured warpage that is to be applied to the electrostatic chuck during a subsequent processing of the wafer. The minimum clamping voltage has a value for each wafer that securely clamps the wafer to the clamping surface and avoids excessive warpage and backside abrasion of the wafer.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: February 16, 1999
    Assignees: Siemens Aktiengesellschaft, International Business Machines Corporation
    Inventors: Mark Hoinkis, Darryl Restaino
  • Patent number: 5798301
    Abstract: A multilayer interconnect structure for a semiconductor integrated circuit comprising a base layer of titanium, a second layer of titanium nitride, a third layer of an aluminum alloy and a top layer of titanium nitride. All of the layers contained within the multilayer interconnect structure are deposited by in-situ deposition in an ultra-high vacuum deposition system. The different layers deposited in the deposition system are conducted consecutively without a disruption to the vacuum. Although each layer in the multilayer interconnect structure are deposited within the integrated ultra-high vacuum deposition system, with multiple deposition chambers, the deposition of the different layers is conducted at different temperatures. The time to the electromigration failure of the multilayer interconnect structure, caused by the electromigration of the aluminum alloy, is greatly increased by depositing the aluminum alloy layer at a temperature in excess of 300.degree. C. and preferably between 350.degree. C.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: August 25, 1998
    Assignees: Siemens Aktiengesellschaft, International Business Machines Corporation
    Inventors: Pei-Ing Paul Lee, Bernd Vollmer, Darryl Restaino, Bill Klaasen
  • Patent number: 5641992
    Abstract: A multilayer interconnect structure for a semiconductor integrated circuit comprising a base layer of titanium, a second layer of titanium nitride, a third layer of an aluminum alloy and a top layer of titanium nitride. All of the layers contained within the multilayer interconnect structure are deposited by in-situ deposition in an ultra-high vacuum deposition system. The different layers deposited in the deposition system are conducted consecutively without a disruption to the vacuum. Although each layer in the multilayer interconnect structure are deposited within the integrated ultra-high vacuum deposition system, with multiple deposition chambers, the deposition of the different layers is conducted at different temperatures. The time to the electromigration failure of the multilayer interconnect structure, caused by the electromigration of the aluminum alloy, is greatly increased by depositing the aluminum alloy layer at a temperature in excess of 300.degree. C. and preferably between 350.degree. C.
    Type: Grant
    Filed: August 10, 1995
    Date of Patent: June 24, 1997
    Assignees: Siemens Components, Inc., International Business Machines Corporation
    Inventors: Pei-Ing Paul Lee, Bernd Vollmer, Darryl Restaino, Bill Klaasen