Patents by Inventor Darryl W. Brousmiche

Darryl W. Brousmiche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240082820
    Abstract: The present disclosure pertains to core-shell particles that are superficially porous, polymer-based, and include organic-inorganic materials. In various embodiments, a non-porous polymer core is surface modified. In various embodiments, a non-porous hybrid organic-inorganic material is in contact with the modified surface of the core, and a porous hybrid organic-inorganic material is in contact with the non-porous hybrid organic-inorganic material. The present disclosure pertains to chromatographic separation devices that comprise such core-shell particles.
    Type: Application
    Filed: February 24, 2023
    Publication date: March 14, 2024
    Applicant: Waters Technologies Corporation
    Inventors: Mingcheng Xu, Darryl W. Brousmiche, Daniel P. Walsh, Nicole L. Lawrence, Kevin D. Wyndham
  • Publication number: 20240082821
    Abstract: The present disclosure pertains to non-porous composite particles that are non-porous, polymer-based, organic-inorganic materials. In various embodiments, a non-porous polymer core is surface modified. In various embodiments, a non-porous hybrid organic-inorganic material is disposed on the modified surface of the core. The present disclosure pertains to chromatographic separation devices that comprise such non-porous composite particles.
    Type: Application
    Filed: February 24, 2023
    Publication date: March 14, 2024
    Applicant: Waters Technologies Corporation
    Inventors: Mingcheng Xu, Darryl W. Brousmiche, Daniel P. Walsh, Nicole L. Lawrence, Kevin D. Wyndham
  • Patent number: 11747310
    Abstract: Methods are provided for making rapid labeled dextran ladders and other calibrants useful in liquid chromatography. The methodologies include a two-step process comprising a reductive amination step of providing a reducing glycan and reacting it with a compound having a primary amine to produce an intermediate compound. The intermediate compound is then rapidly tagged with a rapid tagging reagent to produce the rapid labeled dextran ladder.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 5, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Michael F. Morris, Matthew A. Lauber, Darryl W. Brousmiche
  • Publication number: 20230182114
    Abstract: The present disclosure is directed to surface modified materials such as stationary phase materials for performing size exclusion chromatography. Aspects of the present disclosure feature materials surface modified with a moiety including a polyethylene glycol (PEG) functionality and a moiety comprising a diol functionality. Such surface modified materials exhibit a reduced propensity for ionic and hydrophobic secondary interactions.
    Type: Application
    Filed: November 17, 2022
    Publication date: June 15, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Yeliz Tunc Sarisozen, Nicole L. Lawrence, Darryl W. Brousmiche, MingCheng Xu, Kevin Wyndham
  • Publication number: 20230173406
    Abstract: The present invention provides novel chromatographic materials, e.g., for chromatographic separations, processes for its preparation and separations devices containing the chromatographic material; separations devices, chromatographic columns and kits comprising the same; and methods for the preparation thereof. The chromatographic materials of the invention are superficially porous chromatographic particulate materials comprising sized less than 2 microns.
    Type: Application
    Filed: January 13, 2023
    Publication date: June 8, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Jacob N. Fairchild, Pamela C. Iraneta, Stephen J. Shiner, Darryl W. Brousmiche, Daniel P. Walsh
  • Publication number: 20230126856
    Abstract: Provided herein chiral derivatization reagents for use in separating and detecting of amine containing enantiomers. The said chiral derivatization reagents provide a combination of improved detectable properties to facilitate various downstream analyses. In particular, the chiral derivatization reagents include at least one chiral carbon atom; at least one strongly basic moiety; at least one chromophore moiety or at least one fluorophore moiety; and at least one reactive group. The present disclosure further provides methods for analyzing amine-containing enantiomeric isomers using a chromatographic separation device and a mass spectroscopy.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 27, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Darryl W. Brousmiche, Jun Yang, Weiqiang Gu, Mingcheng Xu, Peng Chen
  • Publication number: 20230101326
    Abstract: In various embodiments, the present disclosure pertains to core-shell particles that comprise a porous hybrid organic-inorganic shell disposed on a surface-modified non-porous polymer particle core. In some embodiments, the present disclosure pertains to chromatographic separation devices that comprise such core-shell particles. In some embodiments, the present disclosure pertains to chromatographic methods that comprise: (a) loading a sample onto a chromatographic column comprising such core-shell particles and (b) flowing a mobile phase through the column.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 30, 2023
    Applicant: Waters Technologies Corporation
    Inventors: MingCheng Xu, Darryl W. Brousmiche, Daniel P. Walsh, Nicole L. Lawrence, Kevin D. Wyndham
  • Publication number: 20230073279
    Abstract: In various embodiments, the present disclosure pertains to organic polymer core-shell particles that comprise a non-porous organic polymer core (i.e., having a pore volume of less than 0.1 cc/g) and a porous organic polymer shell (i.e., having a pore volume of greater than 0.1 cc/g), in which the porous organic polymer shell has a pore size ranging from 100 ? to 3000 ?. In some embodiments, the present disclosure pertains to chromatographic separation devices that comprise such organic polymer core-shell particles. In some embodiments, the present disclosure pertains to chromatographic methods that comprise: (a) loading a sample onto a chromatographic column comprising such organic polymer core-shell particles and (b) flowing a mobile phase through the column.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 9, 2023
    Applicant: Waters Technologies Corporation
    Inventors: MingCheng Xu, Darryl W. Brousmiche, Kevin Wyndham, Daniel P. Walsh, Nicole L. Lawrence
  • Patent number: 11577179
    Abstract: The present invention provides methods for performing supercritical fluid chromatography comprising loading a sample to be separated by supercritical fluid chromatography onto a stationary phase comprising a spherical, monodisperse, core-shell particulate material comprising a nonporous core and one or more layers of a porous shell material surrounding the core, wherein the particles are sized less than 2 microns; and performing supercritical fluid chromatography to separate the sample.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: February 14, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Jacob N. Fairchild, Pamela C. Iraneta, Stephen J. Shiner, Darryl W. Brousmiche, Daniel P. Walsh
  • Publication number: 20230013977
    Abstract: The present disclosure relates to a method for using chemical tags which have two or more sites for ionization to improve quantification and identification of components of interest from a complex mixture. This method relies on first selectively reacting one or more component in a sample with a chemical tag having two or more sites for ionization, followed by separation of components based on charge status, and finally characterization of each component to identify the same. Additionally disclosed are compounds useful as chemical tags in the disclosed methods.
    Type: Application
    Filed: August 30, 2022
    Publication date: January 19, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Giuseppe Astarita, Darryl W. Brousmiche
  • Publication number: 20220412963
    Abstract: Novel reagents comprising MS active, fluorescent compounds having an activated functionality for reaction with aldehydes and useful in labeling biomolecules such as glycans and methods of making the same are taught and described.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 29, 2022
    Inventors: Darryl W. Brousmiche, Matthew A. Lauber
  • Publication number: 20220381788
    Abstract: Methods for derivatization of biomolecules including glycans or other biopolymers with one or more fluorescent, MS active compounds by reductive amination or rapid tagging in order to produce derivatized glycan having a pKa >7 and between about 200 ? and about 1000 ? of nonpolar surface area are described.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Applicant: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Matthew A. Lauber
  • Publication number: 20220362741
    Abstract: In some aspects, the present disclosure pertains to chromatographic materials that comprise (a) a bulk material and (b) a zwitterionic polymer covalently linked to a surface of the bulk material, in which the zwitterionic polymer comprises one or more monomer residues that comprise an amide or urea moiety, a positively charged moiety, and a negatively charged moiety. Other aspects of the present disclosure pertain to chromatographic separation devices that comprise such chromatographic materials, to chromatographic methods that employ such chromatographic separation devices, and to kits that contain (i) such chromatographic materials and (ii) one or more chromatographic devices for containing such materials.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 17, 2022
    Applicant: Waters Technologies Corporation
    Inventors: Nicole L. Lawrence, Darryl W. Brousmiche, Jessica Field, Daniel P. Walsh
  • Patent number: 11460438
    Abstract: The present disclosure relates to a method for using chemical tags which have two or more sites for ionization to improve quantification and identification of components of interest from a complex mixture. This method relies on first selectively reacting one or more component in a sample with a chemical tag having two or more sites for ionization, followed by separation of components based on charge status, and finally characterization of each component to identify the same. Additionally disclosed are compounds useful as chemical tags in the disclosed methods.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: October 4, 2022
    Assignee: Waters Technologies Corporation
    Inventors: Giuseppe Astarita, Darryl W. Brousmiche
  • Patent number: 11448652
    Abstract: Reagents comprising MS active, fluorescent molecules with an activated functionality for reaction with amines useful in tagging biomolecules such as N-glycans and uses thereof are taught and described. In particular, compounds for use as a reagent for rapid fluorescence tagging of biomolecules and enhanced MS signaling are provided. The compounds may have optical centers and therefore may occur in different enantiomeric and diastereomeric configurations. These MS active, fluorescent compounds may have three functional components: (a) a tertiary amino group or other MS active atom; (b) a highly fluorescent moiety, and (c) a reactive group that rapidly reacts with amines. The reactive group provides rapid tagging of desired bio-molecules. The fluorescent moiety provides the fluorescent signal. The tertiary amino group provides the MS signal.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: September 20, 2022
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Darryl W. Brousmiche, Ying-Qing Yu, Matthew Lauber
  • Publication number: 20220280909
    Abstract: Novel sorbents, devices, kits and methods useful for sample treatment are disclosed herein.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Kevin D. Wyndham, Nicole L. Lawrence, Jacob N. Fairchild, Bonnie Alden
  • Publication number: 20220268779
    Abstract: Methods of analyzing glycosylated biomolecules include the steps of producing a deglycosylation mixture of biomolecules deglycosylated by natural or synthetic enzymatic or chemical techniques; providing a reagent solution having a labeling reagent in a polar aprotic, non-nucleophilic organic solvent; and mixing the deglycosylation mixture with the reagent solution in an excess of labeling reagent to produce derivatized glycosylamines. The method steps can be carried out purposefully without depletion of protein matter. A quenching solution can be added to the reaction mixture so that the pH of the reaction mixture is shifted to above 10. The yield of derivatized glycosylamines can be in an amount of about 80 to about 100 mole percent of the reaction mixture with minimal overlabeling, less than 0.2 mole percent.
    Type: Application
    Filed: May 11, 2022
    Publication date: August 25, 2022
    Applicant: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Darryl W. Brousmiche, Stephan M. Koza
  • Publication number: 20220252553
    Abstract: This invention relates to encapsulated reagents for sample and workflow preparation prior to chromatographic, spectroscopic or other analytical systems, use thereof, and devices comprising the same.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 11, 2022
    Applicant: Waters Technoligies Corporation
    Inventors: Kevin Daniel Wyndham, Darryl W. Brousmiche
  • Patent number: 11376561
    Abstract: Sorbents, devices, kits and methods useful for sample treatment are disclosed herein. In particular embodiments, described are inorganic/organic hybrid sorbent particles comprising (a) a core region that comprises a silica component and (b) a surface region that comprises an organic copolymer comprising at least one hydrophobic organic monomer and at least one hydrophilic organic monomer.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: July 5, 2022
    Assignee: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Kevin D. Wyndham, Nicole L. Lawrence, Jacob N. Fairchild, Bonnie A. Alden
  • Patent number: 11371996
    Abstract: Methods of analyzing glycosylated biomolecules include the steps of producing a deglycosylation mixture of biomolecules deglycosylated by natural or synthetic enzymatic or chemical techniques; providing a reagent solution having a labeling reagent in a polar aprotic, non-nucleophilic organic solvent; and mixing the deglycosylation mixture with the reagent solution in an excess of labeling reagent to produce derivatized glycosylamines. The method steps can be carried out purposefully without depletion of protein matter. A quenching solution can be added to the reaction mixture so that the pH of the reaction mixture is shifted to above 10. The yield of derivatized glycosylamines can be in an amount of about 80 to about 100 mole percent of the reaction mixture with minimal overlabeling, less than 0.2 mole percent.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: June 28, 2022
    Assignee: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Darryl W. Brousmiche, Stephan M. Koza