Patents by Inventor Darshan Thaker

Darshan Thaker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240272183
    Abstract: A system and a method for dynamically optimizing an instrument system workflow based on operational monitoring and managing of a workflow for a hardware system. The system includes instrument resources and sample chambers, each resource and chamber with a dedicated sensor configured to acquire data. The system further includes a computing device communicatively connected to the instrument resources and sample chambers. The computing device includes a software application or program comprising a workflow builder, an execution engine, an analytics engine, a virtual system modeling engine, and an optional machine learning engine.
    Type: Application
    Filed: September 19, 2023
    Publication date: August 15, 2024
    Inventors: Darshan Thaker, Matthew E. Fowler, Samira A. Nedungadi, Daniel Banda Villanueva, Brandon R. Bruhn, Nenad Bozinovic, Kellen C. Mobilia
  • Patent number: 11802883
    Abstract: A system and a method for dynamically optimizing an instrument system workflow based on operational monitoring and managing of a workflow for a hardware system. The system includes instrument resources and sample chambers, each resource and chamber with a dedicated sensor configured to acquire data. The system further includes a computing device communicatively connected to the instrument resources and sample chambers. The computing device includes a software application or program comprising a workflow builder, an execution engine, an analytics engine, a virtual system modeling engine, and an optional machine learning engine.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 31, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Darshan Thaker, Matthew E. Fowler, Samira A. Nedungadi, Daniel A. Banda Villanueva, Brandon R. Bruhn, Nenad Bozinovic, Kellen C. Mobilia
  • Publication number: 20230282313
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Application
    Filed: October 21, 2022
    Publication date: September 7, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Publication number: 20230105220
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Application
    Filed: May 16, 2022
    Publication date: April 6, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Patent number: 11521709
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: December 6, 2022
    Assignee: Berkeley Lights Inc.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Publication number: 20210272654
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Publication number: 20200371126
    Abstract: A system and a method for dynamically optimizing an instrument system workflow based on operational monitoring and managing of a workflow for a hardware system. The system includes instrument resources and sample chambers, each resource and chamber with a dedicated sensor configured to acquire data. The system further includes a computing device communicatively connected to the instrument resources and sample chambers. The computing device includes a software application or program comprising a workflow builder, an execution engine, an analytics engine, a virtual system modeling engine, and an optional machine learning engine.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Inventors: Darshan Thaker, Matthew E. Fowler, Samira A. Nedungadi, Daniel Banda, JR., Brandon R. Bruhn, Nenad Bozinovic, Kellen C. Mobilia