Patents by Inventor Darwin A. Clampitt

Darwin A. Clampitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020173095
    Abstract: A dynamic random access memory (DRAM) includes a plurality of memory cells aligned with one another along a pair of wordlines with each wordline being connected to access alternate ones of the memory cells. The DRAM memory cells are formed by transistor stacks that are aligned along and interconnected by wordlines extending between and included within the transistor stacks. By forming the wordlines as a part of the transistor stacks, the wordlines are narrow ribbons of conductive material. During formation of the transistor stacks, the wordlines are connected so that a first wordline controls access transistors of every other one of the memory cells and a second wordline controls the access transistors of the remaining memory cells.
    Type: Application
    Filed: July 9, 2002
    Publication date: November 21, 2002
    Inventors: Darwin A. Clampitt, James E. Green
  • Patent number: 6479855
    Abstract: A semiconductor processing method of forming a capacitor construction includes, a) providing a pair of electrically conductive lines having respective electrically insulated outermost surfaces; b) providing a pair of sidewall spacers laterally outward of each of the pair of conductive lines; c) etching material over the pair of conductive lines between the respective pairs of sidewall spacers selectively relative to the sidewall spacers to form respective recesses over the pair of conductive lines relative to the sidewall spacers, the etching leaving the outermost conductive line surfaces electrically insulated; d) providing a node to which electrical connection to a capacitor is to be made between the pair of conductive lines, one sidewall spacer of each pair of sidewall spacers being closer to the node than the other sidewall spacer of each pair; e) providing an electrically conductive first capacitor plate layer over the node, the one sidewall spacers, and within the respective recesses; and f) providing a
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: November 12, 2002
    Assignee: Micron Technology, Inc.
    Inventors: James E. Green, Darwin Clampitt
  • Publication number: 20020164854
    Abstract: A high dielectric constant memory cell capacitor and method for producing the same, wherein the memory cell capacitor utilizes relatively large surface area conductive structures of thin spacer width pillars or having edges without sharp corners that lead to electric field breakdown of the high dielectric constant material. The combination of high dielectric constant material in a memory cell along with a relatively large surface area conductive structure is achieved through the use of a buffer material as caps on the thin edge surfaces of the relatively large surface area conductive structures to dampen or eliminate the intense electric field which would be generated at the corners of the structures during the operation of the memory cell capacitor had the caps not been present.
    Type: Application
    Filed: June 28, 2002
    Publication date: November 7, 2002
    Inventor: Darwin A. Clampitt
  • Publication number: 20020151151
    Abstract: A honeycomb/webbed, high surface area capacitor formed by etching a storage poly using an etch mask having a plurality of micro vias. The etch mask is preferably formed by applying an HSG polysilicon layer on a surface of the storage poly with a mask layer being deposited over the HSG polysilicon layer. An upper portion of the mask layer is removed to expose the uppermost portions of the HSG polysilicon layer and the exposed HSG polysilicon layer portions are then etched, which translates the pattern of the exposed HSG polysilicon layer portions into the storage poly. The capacitor is completed by depositing a dielectric material layer over the storage poly layer and depositing a cell poly layer over the dielectric material layer.
    Type: Application
    Filed: June 13, 2002
    Publication date: October 17, 2002
    Inventors: James E. Green, Darwin A. Clampitt
  • Publication number: 20020151105
    Abstract: The present invention relates to the field of semiconductor integrated circuits and, in particular, to capacitor arrays formed over the bit line of an integrated circuit substrate. The present invention provides a method for forming stacked capacitors, in which a plurality of patterned capacitor outlines, or walls, are formed over the bit line of a semiconductor device. In one aspect of the invention, spacers are formed on the patterned capacitor outlines and become part of the cell poly after being covered with cell nitride. In another aspect, the spacers are formed of a material capable of being etched back, such as titanium nitride. In another aspect, a metal layer is patterned and annealed to a polysilicon layer to form a mask for a capacitor array, and subsequently etched to form the array.
    Type: Application
    Filed: April 12, 2001
    Publication date: October 17, 2002
    Inventor: Darwin A. Clampitt
  • Patent number: 6458654
    Abstract: A high dielectric constant memory cell capacitor and method for producing the same, wherein the memory cell capacitor utilizes relatively large surface area conductive structures of thin spacer width pillars or having edges without sharp corners that lead to electric field breakdown of the high dielectric constant material. The combination of high dielectric constant material in a memory cell along with a relatively large surface area conductive structure is achieved through the use of a buffer material as caps on the thin edge surfaces of the relatively large surface area conductive structures to dampen or eliminate the intense electric field which would be generated at the corners of the structures during the operation of the memory cell capacitor had the caps not been present.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: October 1, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Darwin A. Clampitt
  • Patent number: 6455367
    Abstract: A dynamic random access memory (DRAM) includes a plurality of memory cells aligned with one another along a pair of wordlines with each wordline being connected to access alternate ones of the memory cells. The DRAM has aligned memory cells having cell areas of 6F2 yet exhibiting substantially the same superior signal-to-noise performance found in DRAM's having staggered 8F2 memory cells. The DRAM memory cells are formed by transistor stacks which are aligned along and interconnected by wordlines extending between and included within the transistor stacks. By forming the wordlines as a part of the transistor stacks, the wordlines are narrow ribbons of conductive material. During formation of the transistor stacks, the wordlines are connected so that a first wordline controls access transistors of every other one of the memory cells and a second wordline controls the access transistors of the remaining memory cells.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: September 24, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, James E. Green
  • Patent number: 6429475
    Abstract: A masking and etching technique during the formation of a memory cell capacitor which utilizes an etching technique to utilize a maximum surface area over the memory cell and to form thin spacers to pattern separation walls between capacitors. This technique results in efficient space utilization which, in turn, results in an increase in the surface area of the capacitor for an increased memory cell capacitance.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Darwin A. Clampitt
  • Patent number: 6420270
    Abstract: A masking and etching technique during the formation of a memory cell capacitor which utilizes an etching technique to utilize a maximum surface area over the memory cell and to form thin spacers to pattern separation walls between capacitors. This technique results in efficient space utilization which, in turn, results in an increase in the surface area of the capacitor for an increased memory cell capacitance.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: July 16, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Darwin A. Clampitt
  • Patent number: 6413855
    Abstract: Interconnections carrying the greatest currents within a semiconductor circuit are formed by an interconnect having at least one and commonly two or more ribs extending generally orthogonally from the interconnect line. The interconnect line is generally horizontal with the rib or ribs extending generally vertically downward from the interconnect line. The resulting interconnect occupies a surface area corresponding to that of the interconnect line yet includes the conductive material of both the interconnect line and the rib or ribs so that the interconnect has substantially less resistance than the interconnect line alone or the rib or ribs alone. The rib or ribs and interconnect line are produced from a conductive layer formed over an insulation layer after the insulation layer has been appropriately masked and etched.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Darwin A. Clampitt
  • Patent number: 6414351
    Abstract: A method for making reduced-size FLASH EEPROM memory circuits, and to the resulting memory circuit. An FET integrated circuit having two different gate oxide thicknesses deposited at a single step, where a portion of the thickness of the thicker oxide is formed, that oxide is removed from the area of the chip to have the thinner oxide, then the rest of the thicker oxide is grown during the time that the thinner oxide is grown on the area of the chip to have the thinner oxide. Layers for the floating gate stacks are deposited. Trenches are etched in a first, and then a second perpendicular direction, and the perpendicular sides of the stacks are covered with vertical-plane nitride layers in two separate operations. Tungsten word lines and bit contacts are deposited. Aluminum-copper lines are deposited on the bit lines.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, James E. Green
  • Patent number: 6413831
    Abstract: A honeycomb/webbed, high surface area capacitor formed by etching a storage poly using an etch mask having a plurality, of micro vias. The etch mask is preferably formed by applying an HSG polysilicon layer on a surface of the storage poly with a mask layer being deposited over the HSG polysilicon layer. An upper portion of the mask layer is removed to expose the uppermost portions of the HSG polysilicon layer and the exposed HSG polysilicon layer portions are then etched, which translates the pattern of the exposed HSG polysilicon layer portions into the storage poly. The capacitor is completed by depositing a dielectric material layer over the storage poly layer and depositing a cell poly layer over the dielectric material layer.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: James E. Green, Darwin A. Clampitt
  • Patent number: 6403430
    Abstract: A semiconductor structure includes a first substrate portion having a surface and a first active region disposed in the first substrate portion. An insulator region is disposed on the first substrate portion outside of the first active region and extends out from the surface. A second substrate portion is disposed on the insulator region, and a second active region is disposed in the second substrate portion. Thus, by disposing a portion of the substrate on the isolation region, the usable substrate area is dramatically increased.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: June 11, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Darwin A. Clampitt
  • Publication number: 20020055231
    Abstract: A semiconductor structure includes a first substrate portion having a surface and a first active region disposed in the first substrate portion. An insulator region is disposed on the first substrate portion outside of the first active region and extends out from the surface. A second substrate portion is disposed on the insulator region, and a second active region is disposed in the second substrate portion. Thus, by disposing a portion of the substrate on the isolation region, the usable substrate area is dramatically increased.
    Type: Application
    Filed: September 6, 2001
    Publication date: May 9, 2002
    Inventor: Darwin A. Clampitt
  • Patent number: 6373123
    Abstract: A semiconductor structure includes a first substrate portion having a surface and a first active region disposed in the first substrate portion. An insulator region is disposed on the first substrate portion outside of the first active region and extends out from the surface. A second substrate portion is disposed on the insulator region, and a second active region is disposed in the second substrate portion. Thus, by disposing a portion of the substrate on the isolation region, the usable substrate area is dramatically increased.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: April 16, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Darwin A. Clampitt
  • Patent number: 6352932
    Abstract: In one aspect, a plurality of layers are formed over a substrate and a series of first trenches are etched into a first of the layers in a first direction. A series of second trenches are etched into the first layer in a second direction which is different from the first direction. Collectively, the first and second trenches define a plurality of different substrate elevations with adjacent elevations being joined by sidewalls which extend therebetween. Sidewall spacers are formed over the sidewalls, and material of the first layer is substantially selectively etched relative to material from which the spacers are formed. Material comprising the spacer material is substantially selectively etched relative to the first material. In a preferred implementation, the etching provides a plurality of cells which are separated from one another by no more than a lateral width dimension of a previously-formed spacer.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: March 5, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, James E. Green
  • Publication number: 20020019122
    Abstract: Interconnections carrying the greatest currents within a semiconductor circuit are formed by an interconnect having at least one and commonly two or more ribs extending generally orthogonally from the interconnect line. The interconnect line is generally horizontal with the rib or ribs extending generally vertically downward from the interconnect line. The resulting interconnect occupies a surface area corresponding to that of the interconnect line yet includes the conductive material of both the interconnect line and the rib or ribs so that the interconnect has substantially less resistance than the interconnect line alone or the rib or ribs alone. The rib or ribs and interconnect line are produced from a conductive layer formed over an insulation layer after the insulation layer has been appropriately masked and etched.
    Type: Application
    Filed: January 7, 2000
    Publication date: February 14, 2002
    Inventor: Darwin A. Clampitt
  • Publication number: 20010038110
    Abstract: A dynamic random access memory (DRAM) includes a plurality of memory cells aligned with one another along a pair of wordlines with each wordline being connected to access alternate ones of the memory cells. The DRAM has aligned memory cells having cell areas of 6F2 yet exhibiting substantially the same superior signal-to-noise performance found in DRAM's having staggered 8F2 memory cells. The DRAM memory cells are formed by transistor stacks which are aligned along and interconnected by wordlines extending between and included within the transistor stacks. By forming the wordlines as a part of the transistor stacks, the wordlines are narrow ribbons of conductive material. During formation of the transistor stacks, the wordlines are connected so that a first wordline controls access transistors of every other one of the memory cells and a second wordline controls the access transistors of the remaining memory cells.
    Type: Application
    Filed: December 11, 2000
    Publication date: November 8, 2001
    Inventors: Darwin A. Clampitt, James E. Green
  • Publication number: 20010023101
    Abstract: A semiconductor processing method of forming a capacitor construction includes, a) providing a pair of electrically conductive lines having respective electrically insulated outermost surfaces; b) providing a pair of sidewall spacers laterally outward of each of the pair of conductive lines; c) etching material over the pair of conductive lines between the respective pairs of sidewall spacers selectively relative to the sidewall spacers to form respective recesses over the pair of conductive lines relative to the sidewall spacers, the etching leaving the outermost conductive line surfaces electrically insulated; d) providing a node to which electrical connection to a capacitor is to be made between the pair of conductive lines, one sidewall spacer of each pair of sidewall spacers being closer to the node than the other sidewall spacer of each pair; e) providing an electrically conductive first capacitor plate layer over the node, the one sidewall spacers, and within the respective recesses; and f) providing a
    Type: Application
    Filed: April 20, 2001
    Publication date: September 20, 2001
    Inventors: James E. Green, Darwin Clampitt
  • Patent number: 6242301
    Abstract: A semiconductor processing method of forming a capacitor construction includes, a) providing a pair of electrically conductive lines having respective electrically insulated outermost surfaces; b) providing a pair of sidewall spacers laterally outward of each of the pair of conductive lines; c) etching material over the pair of conductive lines between the respective pairs of sidewall spacers selectively relative to the sidewall spacers to form respective recesses over the pair of conductive lines relative to the sidewall spacers, the etching leaving the outermost conductive line surfaces electrically insulated; d) providing a node to which electrical connection to a capacitor is to be made between the pair of conductive lines, one sidewall spacer of each pair of sidewall spacers being closer to the node than the other sidewall spacer of each pair; e) providing an electrically conductive first capacitor plate layer over the node, the one sidewall spacers, and within the respective recesses; and f) providing a
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: June 5, 2001
    Assignee: Micron Technology, Inc.
    Inventors: James E. Green, Darwin Clampitt