Patents by Inventor Darya AMIN-SHAHIDI

Darya AMIN-SHAHIDI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250110557
    Abstract: A device includes a button, a set of force sensors coupled with the button, a haptic engine coupled to with the button, and control circuitry, where the control circuitry is configured to control operation of the device according to a first mode of operation during a first time duration to detect user force applied to the button via signals from the set of force sensors, and control the device according to a second mode of operation during a second time duration for closed loop control of haptic feedback to the button via the haptic engine and the set of force sensors.
    Type: Application
    Filed: June 13, 2024
    Publication date: April 3, 2025
    Inventors: Darya Amin-Shahidi, Denis G. Chen, Stephanie Moon, Vyom Sharma
  • Publication number: 20250111974
    Abstract: A device includes a frame and a haptic engine. The frame defines at least one flexure. The haptic engine includes a core attached to the frame, an attraction plate attached to the at least one flexure, and an electric coil wound around at least a portion of the core. The attraction plate is separated from the core by a gap. The electric coil, when energized, creates a magnetic field that causes a width of the gap to temporarily change. Some embodiments include a cushioning pad positioned within the gap or a layer of compliant material that attaches the attraction plate to the at least one flexure or the frame.
    Type: Application
    Filed: June 13, 2024
    Publication date: April 3, 2025
    Inventors: Darya Amin-Shahidi, Scott D. Ridel, Jinhong Qu
  • Publication number: 20250112006
    Abstract: A device includes a button, a base, a haptic engine coupled to the base, and a fastener fastening the button to the base and allowing movement of the button with respect to the base. The movement of the button with respect to the base enables, in part, a better alignment of the button with a device housing to which the base is attached. The haptic engine may include a core, an electric coil wound around a portion of the core, and an attraction plate separated from the core by a gap. The base may include a frame, a set of tabs extending from the core and fastened to the button to allow the movement of the button with respect to the base, and a set of flexures extending from the tabs and coupling the core to the frame. The attraction plate may also be coupled to the frame.
    Type: Application
    Filed: June 13, 2024
    Publication date: April 3, 2025
    Inventors: Darya Amin-Shahidi, Stephanie Moon, Alex M. Lee, Daniel M. Winslow, Scott D. Ridel, Jere C. Harrison, Jacob Barton, Ehsan Masoumi Khalil Abad, Kevin Y. Chung, Jinhong Qu, Sai Sharon Injeti, Fu-Ying Huang
  • Patent number: 12223110
    Abstract: A software defined button includes a force sensor and a haptic output element. The button further includes an immutable logic core and a mutable logic core. The mutable logic core is configured to define one or more thresholds against which input received from the force sensor can be compared to determine whether a user input has been provided. The immutable logic core is configured to verify actual force input has been received when the mutable logic core signals that user input has been received. In response to receiving a verified force input, the haptic output element can be caused to be driven by one of the mutable or immutable logic cores to provide a haptic output to a user.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: February 11, 2025
    Assignee: Apple Inc.
    Inventors: Denis G. Chen, Matthew T. Metzler, Eric M. Innis, Darya Amin-Shahidi, Shingo Yoneoka, Chi Kin Ho, Adriane S. Niehaus, Matthew N. Weege, Michael S. Weinstein, Tristan R. Hudson, Parin Patel, Jonathan A. Gordon
  • Patent number: 12212208
    Abstract: A haptic actuator may include a housing, and a stator fixed to a medial interior portion of the housing. The haptic actuator may also include a field member having an opening receiving the stator therein. The field member may include a frame and at least one permanent magnet carried by the frame. The haptic actuator may also include at least one flexure coupled between an end of the frame and adjacent interior portions of the housing to permit reciprocal movement of the field member within the housing responsive to the stator.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: January 28, 2025
    Assignee: Apple Inc.
    Inventors: Darya Amin-Shahidi, Denis G. Chen, Alex M. Lee, Scott D. Ridel
  • Publication number: 20240103624
    Abstract: A haptic engine for an electronic device includes a coil assembly and a stator. The coil assembly may be coupled to an input structure, such as a button cap. In an gap sensing mode, a first voltage may be driven through the coil assembly to determine an impedance of the coil assembly. The impedance is then used to determine a gap between the coil assembly and the stator. In a haptic drive mode, a second voltage is driven through the coil assembly to produce a haptic output.
    Type: Application
    Filed: May 5, 2023
    Publication date: March 28, 2024
    Inventors: Denis G. Chen, Darya Amin-Shahidi
  • Patent number: 11936269
    Abstract: In one embodiment of the present disclosure a haptic actuator is disclosed. The haptic actuator includes a housing, a movable mass, and a pivot assembly attaching the movable mass to the housing. The pivot assembly defines a pivot axis, and the movable mass has a mass center offset from the pivot axis along a lever arm extending perpendicular to the pivot axis. The haptic actuator includes a spring extending between the movable mass and the housing. The spring stores and releases energy received from movement of the movable mass. The spring prevents full rotation of the movable mass about the pivot axis. The haptic actuator includes an electric coil attached to the movable mass. The electric coil intersects the lever arm. The haptic actuator includes at least one magnet attached to the housing. The magnet is at least partially aligned with the electric coil. The movable mass moves with respect to the at least one magnet when a signal is applied to the coil.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: March 19, 2024
    Assignee: Apple Inc.
    Inventors: Darya Amin-Shahidi, Alex M. Lee, Denis G. Chen
  • Patent number: 11763971
    Abstract: Disclosed herein are reluctance actuators and methods for feedback control of their applied force. Embodiments of the reluctance actuators include an electromagnet positioned to deflect a metallic plate to provide a haptic output. The control of the force is provided without force sensors (sensorless control) by monitoring voltage and/or current (V/I) applied during an actuation. For a given intended force output, an electrical parameter value (flux, current, or other parameter) is read from a look up table (LUT). The LUT may store a present value of the inductance of the reluctance actuator. The feedback control may be a quasi-static control in which the LUT is updated after actuation based on the monitored V/I. The feedback control may be real-time, with a controller comparing an estimated electrical parameter value based on the measured V/I with the value from the LUT.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: September 19, 2023
    Assignee: Apple Inc.
    Inventors: Darya Amin-Shahidi, Hari Vasudevan, Juil Lee, Denis G. Chen
  • Publication number: 20230086204
    Abstract: In one embodiment of the present disclosure a haptic actuator is disclosed. The haptic actuator includes a housing, a movable mass, and a pivot assembly attaching the movable mass to the housing. The pivot assembly defines a pivot axis, and the movable mass has a mass center offset from the pivot axis along a lever arm extending perpendicular to the pivot axis. The haptic actuator includes a spring extending between the movable mass and the housing. The spring stores and releases energy received from movement of the movable mass. The spring prevents full rotation of the movable mass about the pivot axis. The haptic actuator includes an electric coil attached to the movable mass. The electric coil intersects the lever arm. The haptic actuator includes at least one magnet attached to the housing. The magnet is at least partially aligned with the electric coil. The movable mass moves with respect to the at least one magnet when a signal is applied to the coil.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Darya Amin-Shahidi, Alex M. Lee, Denis G. Chen
  • Patent number: 11573636
    Abstract: A haptic actuator may include a housing, a stator coupled to a medial interior portion of the housing, and a field member within the housing and having an opening receiving the stator therein. The field member may include a frame, and at least one permanent magnet carried by the frame. The at least one permanent magnet may include side-by-side magnetic segments having alternating magnetic polarizations with at least one non-vertical magnetic polarization transition zone between adjacent magnetic segments.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: February 7, 2023
    Assignee: Apple Inc.
    Inventors: Darya Amin-Shahidi, Denis G. Chen, Alex M. Lee, Scott D. Ridel
  • Patent number: 11522483
    Abstract: A haptic system includes a haptic engine in which a reluctance motor is driven by a driver controller operated in conjunction with an impedance-estimator that uses amplitude-modulated calibration signals. An enveloped-calibration signal is superimposed on a haptic-drive signal to quickly, and accurately, estimate the driving coil's impedance, while minimizing power penalty.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: December 6, 2022
    Assignee: Apple Inc.
    Inventors: Denis G. Chen, Juil Lee, Hari Vasudevan, Riccardo Tarelli, Darya Amin-Shahidi
  • Publication number: 20220336132
    Abstract: Disclosed herein are reluctance actuators and methods for feedback control of their applied force. Embodiments of the reluctance actuators include an electromagnet positioned to deflect a metallic plate to provide a haptic output. The control of the force is provided without force sensors (sensorless control) by monitoring voltage and/or current (V/I) applied during an actuation. For a given intended force output, an electrical parameter value (flux, current, or other parameter) is read from a look up table (LUT). The LUT may store a present value of the inductance of the reluctance actuator. The feedback control may be a quasi-static control in which the LUT is updated after actuation based on the monitored V/I. The feedback control may be real-time, with a controller comparing an estimated electrical parameter value based on the measured V/I with the value from the LUT.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Darya Amin-Shahidi, Hari Vasudevan, Juil Lee, Denis G. Chen
  • Patent number: 11380470
    Abstract: Disclosed herein are reluctance actuators and methods for feedback control of their applied force. Embodiments of the reluctance actuators include an electromagnet positioned to deflect a metallic plate to provide a haptic output. The control of the force is provided without force sensors (sensorless control) by monitoring voltage and/or current (V/I) applied during an actuation. For a given intended force output, an electrical parameter value (flux, current, or other parameter) is read from a look up table (LUT). The LUT may store a present value of the inductance of the reluctance actuator. The feedback control may be a quasi-static control in which the LUT is updated after actuation based on the monitored V/I. The feedback control may be real-time, with a controller comparing an estimated electrical parameter value based on the measured V/I with the value from the LUT.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: July 5, 2022
    Assignee: Apple Inc.
    Inventors: Darya Amin-Shahidi, Hari Vasudevan, Juil Lee, Denis M. Chen
  • Publication number: 20210408885
    Abstract: A haptic actuator may include a housing, and a stator fixed to a medial interior portion of the housing. The haptic actuator may also include a field member having an opening receiving the stator therein. The field member may include a frame and at least one permanent magnet carried by the frame. The haptic actuator may also include at least one flexure coupled between an end of the frame and adjacent interior portions of the housing to permit reciprocal movement of the field member within the housing responsive to the stator.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventors: Darya Amin-Shahidi, Denis G. Chen, Alex M. Lee, Scott D. Ridel
  • Publication number: 20210405753
    Abstract: A haptic actuator may include a housing, a stator coupled to a medial interior portion of the housing, and a field member within the housing and having an opening receiving the stator therein. The field member may include a frame, and at least one permanent magnet carried by the frame. The at least one permanent magnet may include side-by-side magnetic segments having alternating magnetic polarizations with at least one non-vertical magnetic polarization transition zone between adjacent magnetic segments.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventors: Darya AMIN-SHAHIDI, Denis G. CHEN, Alex M. LEE, Scott D. RIDEL
  • Patent number: 11150731
    Abstract: Systems, methods, and computer-readable media provide multiple modes of haptic feedback for an electronic device using a single haptic actuator. Adjusting a parameter (e.g., frequency) of an actuator waveform generated by the single haptic actuator may affect how a mechanical coupling between the haptic actuator and a portion of the electronic device produces a device waveform at that device portion from the actuator waveform. A first mechanical coupling with a first response characteristic (e.g., stiffness or resonance frequency) may be provided between the haptic actuator and a first portion of the electronic device (e.g., a user input component of the electronic device), while a second mechanical coupling with a different second response characteristic may be provided between the haptic actuator and a second portion of the electronic device (e.g., the device housing of the electronic device) to selectively provide localized haptic feedback at the first portion of the electronic device.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: October 19, 2021
    Assignee: Apple Inc.
    Inventors: Darya Amin-Shahidi, Alex M. Lee
  • Publication number: 20210175831
    Abstract: A haptic system includes a haptic engine in which a reluctance motor is driven by a driver controller operated in conjunction with an impedance-estimator that uses amplitude-modulated calibration signals. An enveloped-calibration signal is superimposed on a haptic-drive signal to quickly, and accurately, estimate the driving coil's impedance, while minimizing power penalty.
    Type: Application
    Filed: September 25, 2020
    Publication date: June 10, 2021
    Inventors: Denis G. Chen, Juil Lee, Hari Vasudevan, Riccardo Tarelli, Darya Amin-Shahidi
  • Patent number: 10976824
    Abstract: A reluctance haptic engine for an electronic device includes a core, an attractor, and one or more flexible support members. The core and/or the attractor may be coupled to an input structure, such as a button cap, trackpad cover, touchscreen cover, or the like. In an unactuated configuration, flexible support members maintain a gap between the core and the attractor. An electrical current may be applied to one or more conduction loops of the core to actuate the reluctance haptic engine and provide a haptic output by moving the input structure. The electrical current may cause a magnetic flux that results in a reluctance force that pulls the attractor and the core together and causes the input structure to move (e.g., translate, rotate, oscillate, vibrate, or deform) to produce a haptic output.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: April 13, 2021
    Assignee: Apple Inc.
    Inventors: Darya Amin-Shahidi, Alex M. Lee, Denis G. Chen, Alex J. Lehmann, Alex J. Speltz, Etienne Marecal
  • Publication number: 20210096647
    Abstract: A reluctance haptic engine for an electronic device includes a core, an attractor, and one or more flexible support members. The core and/or the attractor may be coupled to an input structure, such as a button cap, trackpad cover, touchscreen cover, or the like. In an unactuated configuration, flexible support members maintain a gap between the core and the attractor. An electrical current may be applied to one or more conduction loops of the core to actuate the reluctance haptic engine and provide a haptic output by moving the input structure. The electrical current may cause a magnetic flux that results in a reluctance force that pulls the attractor and the core together and causes the input structure to move (e.g., translate, rotate, oscillate, vibrate, or deform) to produce a haptic output.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Darya Amin-Shahidi, Alex M. Lee, Denis G. Chen, Alex J. Lehmann, Alex J. Speltz, Etienne Marecal
  • Publication number: 20210090773
    Abstract: Disclosed herein are reluctance actuators and methods for feedback control of their applied force. Embodiments of the reluctance actuators include an electromagnet positioned to deflect a metallic plate to provide a haptic output. The control of the force is provided without force sensors (sensorless control) by monitoring voltage and/or current (V/I) applied during an actuation. For a given intended force output, an electrical parameter value (flux, current, or other parameter) is read from a look up table (LUT). The LUT may store a present value of the inductance of the reluctance actuator. The feedback control may be a quasi-static control in which the LUT is updated after actuation based on the monitored V/I. The feedback control may be real-time, with a controller comparing an estimated electrical parameter value based on the measured V/I with the value from the LUT.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 25, 2021
    Inventors: Darya Amin-Shahidi, Hari Vasudevan, Juil Lee, Denis M. Chen