Patents by Inventor Darya I. Chudova

Darya I. Chudova has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230332225
    Abstract: Disclosed are methods for determining at least one sequence of interest of a fetus of a pregnant mother. In various embodiments, the method can determine one or more sequences of interest in a test sample that comprises a mixture of maternal cellular DNA and mother-and-fetus cfDNA. In some embodiments, methods are provided for determining whether the fetus has a genetic disease. In some embodiments, methods are provided for determining whether the fetus is homozygous in a disease causing allele when the mother is heterozygous of the same allele. In some embodiments, methods are provided for determining whether the fetus has a copy number variation (CNV) or a non-CNV genetic sequence anomaly.
    Type: Application
    Filed: March 7, 2023
    Publication date: October 19, 2023
    Inventors: Anupama Srinivasan, Darya I. Chudova, Richard P. Rava
  • Patent number: 11629378
    Abstract: Disclosed are methods for determining at least one sequence of interest of a fetus of a pregnant mother. In various embodiments, the method can determine one or more sequences of interest in a test sample that comprises a mixture of maternal cellular DNA and mother-and-fetus cfDNA. In some embodiments, methods are provided for determining whether the fetus has a genetic disease. In some embodiments, methods are provided for determining whether the fetus is homozygous in a disease causing allele when the mother is heterozygous of the same allele. In some embodiments, methods are provided for determining whether the fetus has a copy number variation (CNV) or a non-CNV genetic sequence anomaly.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: April 18, 2023
    Assignee: Illumina, Inc.
    Inventors: Anupama Srinivasan, Darya I. Chudova, Richard P. Rava
  • Publication number: 20230044849
    Abstract: Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs known or suspected to be associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by deriving a fragment size parameter. In some implementations, information from fragments of different sizes are used to evaluate copy number variations. In some implementations, one or more t-statistics obtained from coverage information of the sequence of interest is used to evaluate copy number variations. In some implementations, one or more fetal fraction estimates are combined with one or more t-statistics to determine copy number variations.
    Type: Application
    Filed: July 22, 2022
    Publication date: February 9, 2023
    Inventors: Sven Duenwald, David A. Comstock, Catalin Barbacioru, Darya I. Chudova, Richard P. Rava, Keith W. Jones, Gengxin Chen, Dimitri Skvortsov
  • Patent number: 11430541
    Abstract: Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs known or suspected to be associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by deriving a fragment size parameter. In some implementations, information from fragments of different sizes are used to evaluate copy number variations. In some implementations, one or more t-statistics obtained from coverage information of the sequence of interest is used to evaluate copy number variations. In some implementations, one or more fetal fraction estimates are combined with one or more t-statistics to determine copy number variations.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 30, 2022
    Assignee: Verinata Health, Inc.
    Inventors: Sven Duenwald, David A. Comstock, Catalin Barbacioru, Darya I. Chudova, Richard P. Rava, Keith W. Jones, Gengxin Chen, Dimitri Skvortsov
  • Publication number: 20210371907
    Abstract: Disclosed are methods for determining copy number variation (CNV) associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation (CNV) of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by deriving a fragment size parameter, such as a size-weighted coverage or a fraction of fragments in a size range. In some embodiments, the fragment size parameter is adjusted to remove within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples. Also disclosed are systems and computer program products for evaluation of CNV of sequences of interest.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 2, 2021
    Inventors: Darya I. Chudova, Catalin Barbacioru, Sven Duenwald, David A. Comstock, Richard P. Rava
  • Publication number: 20210262040
    Abstract: The present invention relates to compositions and methods for molecular profiling and diagnostics for genetic disorders and cancer, including but not limited to gene expression product markers associated with cancer or genetic disorders. In particular, the present invention provides algorithms and methods of classifying cancer, for example, thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Application
    Filed: March 30, 2021
    Publication date: August 26, 2021
    Inventors: Giulia C. KENNEDY, Darya I. CHUDOVA, Eric T. WANG, Jonathan I. WILDE, Duncan H. Whitney, Michael Elashoff
  • Publication number: 20210238686
    Abstract: The present invention relates to compositions, kits, and methods for molecular profiling and cancer diagnostics, including but not limited to genomic DNA markers associated with cancer. In particular, the present invention provides molecular profiles associated with thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Application
    Filed: January 25, 2021
    Publication date: August 5, 2021
    Inventors: Giulia C. KENNEDY, Bonnie H. Anderson, Darya I. Chudova, Eric T. Wang, Hui Wang, Moraima Pagan, Nusrat Rabbee, Jonathan I. Wilde
  • Patent number: 11072814
    Abstract: Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation (CNV) of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs known or suspected to be associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by deriving a fragment size parameter, such as a size-weighted coverage or a fraction of fragments in a size range. In some embodiments, the fragment size parameter is adjusted to remove within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: July 27, 2021
    Assignee: Verinata Health, Inc.
    Inventors: Darya I. Chudova, Catalin Barbacioru, Sven Duenwald, David A. Comstock, Richard P. Rava
  • Publication number: 20210108265
    Abstract: Disclosed are methods for determining at least one sequence of interest of a fetus of a pregnant mother. In various embodiments, the method can determine one or more sequences of interest in a test sample that comprises a mixture of maternal cellular DNA and mother-and-fetus cfDNA. In some embodiments, methods are provided for determining whether the fetus has a genetic disease. In some embodiments, methods are provided for determining whether the fetus is homozygous in a disease causing allele when the mother is heterozygous of the same allele. In some embodiments, methods are provided for determining whether the fetus has a copy number variation (CNV) or a non-CNV genetic sequence anomaly.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Anupama Srinivasan, Darya I. Chudova, Richard P. Rava
  • Patent number: 10934587
    Abstract: The present invention relates to compositions, kits, and methods for molecular profiling and cancer diagnostics, including but not limited to genomic DNA markers associated with cancer. In particular, the present invention provides molecular profiles associated with thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: March 2, 2021
    Assignee: Veracyte, Inc.
    Inventors: Giulia Kennedy, Bonnie H. Anderson, Darya I. Chudova, Eric T. Wang, Hui Wang, Moraima Pagan, Nusrat Rabbee, Jonathan I. Wilde
  • Patent number: 10837055
    Abstract: Disclosed are methods for determining at least one sequence of interest of a fetus of a pregnant mother. In various embodiments, the method can determine one or more sequences of interest in a test sample that comprises a mixture of maternal cellular DNA and mother-and-fetus cfDNA. In some embodiments, methods are provided for determining whether the fetus has a genetic disease. In some embodiments, methods are provided for determining whether the fetus is homozygous in a disease causing allele when the mother is heterozygous of the same allele. In some embodiments, methods are provided for determining whether the fetus has a copy number variation (CNV) or a non-CNV genetic sequence anomaly.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: November 17, 2020
    Assignee: Illumina, Inc.
    Inventors: Anupama Srinivasan, Darya I. Chudova, Richard P. Rava
  • Patent number: 10741269
    Abstract: Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation (CNV) of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs known or suspected to be associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by removing within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples. Also disclosed are systems and computer program products for evaluation of CNV of sequences of interest.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: August 11, 2020
    Assignee: Verinata Health, Inc.
    Inventors: Darya I. Chudova, Diana Abdueva, Richard P. Rava
  • Patent number: 10731223
    Abstract: The present invention relates to compositions and methods for molecular profiling and diagnostics for genetic disorders and cancer, including but not limited to gene expression product markers associated with cancer or genetic disorders. In particular, the present invention provides algorithms and methods of classifying cancer, for example, thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: August 4, 2020
    Assignee: Veracyte, Inc.
    Inventors: Giulia C. Kennedy, Darya I. Chudova, Eric T. Wang, Jonathan I. Wilde
  • Publication number: 20200202974
    Abstract: The present invention relates to compositions and methods for molecular profiling and diagnostics for genetic disorders and cancer, including but not limited to gene expression product markers associated with cancer or genetic disorders. In particular, the present invention provides algorithms and methods of classifying cancer, for example, thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 25, 2020
    Inventors: Giulia C. KENNEDY, Darya I. CHUDOVA, Eric T. WANG, Jonathan I. WILDE
  • Publication number: 20200176078
    Abstract: The present invention relates to compositions and methods for molecular profiling and diagnostics for genetic disorders and cancer, including but not limited to gene expression product markers associated with cancer or genetic disorders. In particular, the present invention provides algorithms and methods of classifying cancer, for example, thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 4, 2020
    Inventors: Giulia C. KENNEDY, Darya I. CHUDOVA, Eric T. WANG, Jonathan I. WILDE
  • Patent number: 10672504
    Abstract: The present invention relates to compositions and methods for molecular profiling and diagnostics for genetic disorders and cancer, including but not limited to gene expression product markers associated with cancer or genetic disorders. In particular, the present invention provides algorithms and methods of classifying cancer, for example, thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: June 2, 2020
    Assignee: Veracyte, Inc.
    Inventors: Giulia C. Kennedy, Darya I. Chudova, Eric T. Wang, Jonathan I. Wilde, Bonnie H. Anderson, Hui Wang, Moraima Pagan, Nusrat Rabbee
  • Publication number: 20190318805
    Abstract: Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions, including syndromes related to CNV of subchromosomal regions. In some embodiments, methods are provided for determining CNV of fetuses using maternal samples comprising maternal and fetal cell free DNA. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by removing within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples. In some embodiments, syndrome related biases in sample data are also removed to increase signal to noise ratio. Also disclosed are systems for evaluation of CNV of sequences of interest.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 17, 2019
    Inventors: Darya I. Chudova, Diana Abdueva
  • Publication number: 20190252039
    Abstract: The present invention relates to compositions and methods for molecular profiling and diagnostics for genetic disorders and cancer, including but not limited to gene expression product markers associated with cancer or genetic disorders. In particular, the present invention provides algorithms and methods of classifying cancer, for example, thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Application
    Filed: March 14, 2019
    Publication date: August 15, 2019
    Inventors: Giulia C. KENNEDY, Darya I. CHUDOVA, Eric T. WANG, Jonathan I. WILDE
  • Patent number: 10318704
    Abstract: Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions, including syndromes related to CNV of subchromosomal regions. In some embodiments, methods are provided for determining CNV of fetuses using maternal samples comprising maternal and fetal cell free DNA. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by removing within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples. In some embodiments, syndrome related biases in sample data are also removed to increase signal to noise ratio. Also disclosed are systems for evaluation of CNV of sequences of interest.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: June 11, 2019
    Assignee: Verinata Health, Inc.
    Inventors: Darya I. Chudova, Diana Abdueva
  • Publication number: 20190172551
    Abstract: The present invention relates to compositions and methods for molecular profiling and diagnostics for genetic disorders and cancer, including but not limited to gene expression product markers associated with cancer or genetic disorders. In particular, the present invention provides algorithms and methods of classifying cancer, for example, thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
    Type: Application
    Filed: January 15, 2019
    Publication date: June 6, 2019
    Inventors: Giulia C. KENNEDY, Darya I. CHUDOVA, Eric T. WANG, Jonathan I. WILDE