Patents by Inventor Daryl Lim

Daryl Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230257736
    Abstract: Disclosed is a method for assessing the transduction efficiency and/or specificity of vectors at single cell level.
    Type: Application
    Filed: June 11, 2021
    Publication date: August 17, 2023
    Inventors: Wei Leong Chew, Choong Tat Keng, Ke Guo, Daryl Lim
  • Publication number: 20220007939
    Abstract: An apparatus, and corresponding method, for determining a property of an eye includes a housing with a proximal port that receives an eye and also light from the eye. The housing further includes a distal port, and the two ports together form a visual channel providing an open view to enable the eye to see target indicia external to and spaced away from the housing. A wavefront sensor within the housing is configured to receive the light from the eye via the optical path and to measure a wavefront of the light. A determination module determines an objective refractive correction based on the wavefront and predicts a subjective refractive preference of a person having the eye based on the objective refractive correction. Embodiments can be handheld, and binocular, and predict subjective refraction based on demographic and other information.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 13, 2022
    Inventors: Shivang R. Dave, Daryl Lim, Nicholas James Durr
  • Patent number: 11096576
    Abstract: An apparatus, and corresponding method, for determining a refractive property of an eye includes a housing with a port configured to receive an eye and also light from the eye. A tunable lens can be mounted to the housing to apply a variable focal power to the light from the eye and to pass the light along an optical path toward a wavefront sensor within the housing. The wavefront sensor can receive the light via the optical path and measure a wavefront thereof. A determination module can be configured to determine a property of the eye based on the wavefront. Embodiments can be handheld, portable, and open view, while providing objective wavefront aberrometry, subjective phoroptry, and accommodation and presbyoptic evaluation, as well as lensometry functions.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: August 24, 2021
    Assignee: PlenOptika, Inc.
    Inventors: Shivang R. Dave, Daryl Lim, Nicholas James Durr
  • Patent number: 10786150
    Abstract: Eye prescriptions may be determined by providing a simple, easy to use, portable device with a specially configured targeting light source that aligns the eye, mitigates accommodation, and provides accurate results. Unlike stationary, closed view autorefractors, this device typically is portable, self-usable, relatively inexpensive, enabling more widespread use across the world.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: September 29, 2020
    Assignees: Massachusetts Institute of Technology, Consejo Superior de Investigaciones Cientificas
    Inventors: Nicholas James Durr, Eduardo Lage Negro, Shivang R. Dave, Carlos Dorronsoro Diaz, Susana Marcos Celestino, Daryl Lim
  • Publication number: 20200046222
    Abstract: An apparatus, and corresponding method, for determining a refractive property of an eye includes a housing with a port configured to receive an eye and also light from the eye. A tunable lens can be mounted to the housing to apply a variable focal power to the light from the eye and to pass the light along an optical path toward a wavefront sensor within the housing. The wavefront sensor can receive the light via the optical path and measure a wavefront thereof. A determination module can be configured to determine a property of the eye based on the wavefront. Embodiments can be handheld, portable, and open view, while providing objective wavefront aberrometry, subjective phoroptry, and accommodation and presbyoptic evaluation, as well as lensometry functions.
    Type: Application
    Filed: June 13, 2017
    Publication date: February 13, 2020
    Inventors: Shivang R. Dave, Daryl Lim, Nicholas James Durr
  • Publication number: 20190313904
    Abstract: An apparatus, and corresponding method, for determining a refractive property of an eye includes a housing with a port configured to receive an eye and also light from the eye. A tunable lens can be mounted to the housing to apply a variable focal power to the light from the eye and to pass the light along an optical path toward a wavefront sensor within the housing. The wavefront sensor can receive the light via the optical path and measure a wavefront thereof. A determination module can be configured to determine a property of the eye based on the wavefront. Embodiments can be handheld, portable, and open view, while providing objective wavefront aberrometry, subjective phoroptry, and accommodation and presbyoptic evaluation, as well as lensometry functions.
    Type: Application
    Filed: June 13, 2017
    Publication date: October 17, 2019
    Inventors: Shivang R. Dave, Daryl Lim, Nicholas James Durr
  • Publication number: 20180078131
    Abstract: Eye prescriptions may be determined by providing a simple, easy to use, portable device with a specially configured targeting light source that aligns the eye, mitigates accommodation, and provides accurate results. Unlike stationary, closed view autorefractors, this device typically is portable, self-usable, relatively inexpensive, enabling more widespread use across the world.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 22, 2018
    Inventors: Nicholas James Durr, Eduardo Lage Negro, Shivang R. Dave, Carlos Dorronsoro Diaz, Susana Marcos Celestino, Daryl Lim
  • Publication number: 20160128562
    Abstract: Eye prescriptions may be determined by providing a simple, easy to use, portable device with a specially configured targeting light source that aligns the eye, mitigates accommodation, and provides accurate results. Unlike stationary, closed view autorefractors, this device typically is portable, self-usable, relatively inexpensive, enabling more widespread use across the world.
    Type: Application
    Filed: July 2, 2014
    Publication date: May 12, 2016
    Inventors: Nicholas James Durr, Eduardo Lage Negro, Shivang R. Dave, Carlos Dorronsoro Diaz, Susana Marcos Celestino, Daryl Lim
  • Publication number: 20150374210
    Abstract: The present invention relates to systems and methods for photometric endoscope imaging. The methods can further include chromoendoscopy and computer aided detection procedures for the imaging of body lumens and cavities.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 31, 2015
    Inventors: Nicholas J. Durr, Vicente Jose Parot, Daryl Lim, German Gonzalez Serrano
  • Patent number: 8310532
    Abstract: A first image data set of the real-world object is received at a processor where the real-world object was illuminated with substantially uniform illumination. A second image data set of the real-world object is received at the processor where the real-world object was illuminated with substantially structured illumination. A high pass filter is applied to the first-image data set to remove out-of-focus content and retrieve high-frequency in-focus content. The local contrast of the second-image data set is determined producing a low resolution local contrast data set. The local contrast provides a low resolution estimate of the in-focus content in the first-image data set. A low pass filter is applied to the estimated low resolution in-focus data set, thus making its frequency information complementary to the high-frequency in-focus data set. The low and high frequency in-focus data sets are combined to produce an optically-sectioned data set of the real-world object.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 13, 2012
    Assignee: Trustees of Boston University
    Inventors: Jerome Mertz, Daryl Lim, Kengyeh K. Chu
  • Publication number: 20110109736
    Abstract: A first image data set of the real-world object is received at a processor where the real-world object was illuminated with substantially uniform illumination. A second image data set of the real-world object is received at the processor where the real-world object was illuminated with substantially structured illumination. A high pass filter is applied to the first-image data set to remove out-of-focus content and retrieve high-frequency in-focus content. The local contrast of the second-image data set is determined producing a low resolution local contrast data set. The local contrast provides a low resolution estimate of the in-focus content in the first-image data set. A low pass filter is applied to the estimated low resolution in-focus data set, thus making its frequency information complementary to the high-frequency in-focus data set. The low and high frequency in-focus data sets are combined to produce an optically-sectioned data set of the real-world object.
    Type: Application
    Filed: June 3, 2009
    Publication date: May 12, 2011
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Jerome Mertz, Daryl Lim, Kengyeh K. Chu