Patents by Inventor Dasa Lipovsek

Dasa Lipovsek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170029479
    Abstract: Modified FGF-21 polypeptides and uses thereof are provided, for example, for the treatment of diseases associated with fibrosis. Modified FGF-21 polypeptides are disclosed that contain an internal deletion and optionally replacement peptide, optionally modified with at least one non-naturally-encoded amino acid, and/or optionally fused to a fusion partner.
    Type: Application
    Filed: July 20, 2016
    Publication date: February 2, 2017
    Inventors: Paul E. MORIN, Daniel COHEN, Ranjan MUKHERJEE, Timothy P. REILLY, Rose C. CHRISTIAN, Dasa LIPOVSEK, Ray CAMPHAUSEN, John KRUPINSKI
  • Patent number: 9522951
    Abstract: Fibronectin type III (10Fn3) binding domains having novel designs that are associated with reduced immunogenicity are provided. The application describes alternative 10Fn3 binding domains in which certain immunogenic regions are not modified when producing a binder in order to maintain recognition as a self antigen by the host organism. The application also describes 10Fn3 binding domains in which HLA anchor regions have been destroyed thereby reducing the immunogenic contribution of the adjoining region. Also provided are 10Fn3 domains having novel combinations of modified regions that can bind to a desired target with high affinity.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 20, 2016
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Jonathan Davis, Dasa Lipovsek, Ray Camphausen
  • Patent number: 9493546
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: November 15, 2016
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Sharon Cload, Linda Engle, Dasa Lipovsek, Malavi Madireddi, Ginger Chao Rakestraw, Joanna Swain, Wenjun Zhao, Hui Wei, Aaron P. Yamniuk, Vidhyashankar Ramamurthy, Alexander T. Kozhich, Martin J. Corbett, Stanley Richard Krystek, Jr.
  • Patent number: 9434778
    Abstract: Modified FGF-21 polypeptides and uses thereof are provided, for example, for the treatment of diseases associated with fibrosis. Modified FGF-21 polypeptides are disclosed that contain an internal deletion and optionally replacement peptide, optionally modified with at least one non-naturally-encoded amino acid, and/or optionally fused to a fusion partner.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: September 6, 2016
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Paul E. Morin, Daniel Cohen, Ranjan Mukherjee, Timothy P. Reilly, Rose C. Christian, Dasa Lipovsek, Ray Camphausen, John Krupinski
  • Publication number: 20160237423
    Abstract: This application provides an improved screening method for the selection of target-binding proteins having desirable biophysical properties. The method combines mRNA display and yeast surface display in a way that takes advantage of the desirable attributes of both processes.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 18, 2016
    Inventor: Dasa Lipovsek
  • Patent number: 9416170
    Abstract: Fibronectin type III (10Fn3) binding domains having novel designs that are associated with reduced immunogenicity are provided. The application describes alternative 10Fn3 binding domains in which certain immunogenic regions are not modified when producing a binder in order to maintain recognition as a self antigen by the host organism. The application also describes 10Fn3 binding domains in which HLA anchor regions have been destroyed thereby reducing the immunogenic contribution of the adjoining region. Also provided are 10Fn3 domains having novel combinations of modified regions that can bind to a desired target with high affinity.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: August 16, 2016
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Jonathan Davis, Dasa Lipovsek, Ray Camphausen
  • Publication number: 20160159883
    Abstract: The present invention relates to fibronectin based scaffold domain proteins that bind PCSK9. The invention also relates to the use of the innovative proteins in therapeutic applications to treat atherosclerosis, hypercholesterolemia and other cholesterol related diseases. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative protein.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 9, 2016
    Inventors: Ray Camphausen, Jonathan H. Davis, Sharon T. Cload, Fabienne M. Denhez, Amna Saeed-Kothe, Dasa Lipovsek, Ching-Hsiung Frederick Lo, Chee Meng Low, Bowman Miao, Tracy S. Mitchell, Rex A. Parker, Ginger C. Rakestraw, Katie A. Russo, Doree F. Sitkoff
  • Patent number: 9347058
    Abstract: This application provides an improved screening method for the selection of target-binding proteins having desirable biophysical properties. The method combines mRNA display and yeast surface display in a way that takes advantage of the desirable attributes of both processes.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: May 24, 2016
    Assignee: Bristol-Myers Squibb Company
    Inventor: Dasa Lipovsek
  • Publication number: 20160115213
    Abstract: Modified FGF-21 polypeptides and uses thereof are provided, for example, for the treatment of diseases associated with fibrosis. Modified FGF-21 polypeptides are disclosed that contain an internal deletion and optionally replacement peptide, optionally modified with at least one non-naturally-encoded amino acid, and/or optionally fused to a fusion partner.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 28, 2016
    Inventors: Paul E. MORIN, Daniel COHEN, Ranjan MUKHERJEE, Timothy P. REILLY, Rose C. CHRISTIAN, Dasa LIPOVSEK, Ray CAMPHAUSEN, John KRUPINSKI
  • Patent number: 9234027
    Abstract: The present invention relates to fibronectin based scaffold domain proteins that bind PCSK9. The invention also relates to the use of the innovative proteins in therapeutic applications to treat atherosclerosis, hypercholesterolemia and other cholesterol related diseases. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative protein.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 12, 2016
    Assignee: Bristol-Myers Squibb Company
    Inventors: Ray Camphausen, Jonathan H. Davis, Sharon T. Cload, Fabienne M. Denhez, Amna Saeed-Kothe, Dasa Lipovsek, Ching-Hsiung Frederick Lo, Chee Meng Low, Bowman Miao, Tracy S. Mitchell, Rex A. Parker, Ginger C. Rakestraw, Katie A. Russo, Doree F. Sitkoff
  • Publication number: 20150361159
    Abstract: Fibronectin type III (10Fn3) binding domains having novel designs are provided. Also provided are 10Fn3 domains having combinations of modified regions that can bind to a desired target.
    Type: Application
    Filed: January 30, 2014
    Publication date: December 17, 2015
    Inventors: Dasa LIPOVSEK, Jonathan H. Davis
  • Publication number: 20150231211
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Application
    Filed: February 26, 2015
    Publication date: August 20, 2015
    Inventors: Sharon CLOAD, Linda ENGLE, Dasa LIPOVSEK, Malavi MADIREDDI, Ginger Chao RAKESTRAW, Joanna SWAIN, Wenjun ZHAO, Alexander T. KOZHICH, Martin J. CORBETT
  • Patent number: 8993265
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: March 31, 2015
    Assignee: Bristol-Myers Squibb Company
    Inventors: Sharon Cload, Linda Engle, Dasa Lipovsek, Malavi Madireddi, Ginger Chao Rakestraw, Joanna Swain, Wenjun Zhao, Martin J. Corbett, Alexander T. Kozhich
  • Publication number: 20150072919
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Inventors: Sharon CLOAD, Linda ENGLE, Dasa LIPOVSEK, Malavi MADIREDDI, Ginger Chao RAKESTRAW, Joanna SWAIN, Wenjun ZHAO, Hui WEI, Aaron P. YAMNIUK, Vidhyashankar RAMAMURTHY, Alexander T. KOZHICH, Martin J. CORBETT, Stanley Richard KRYSTEK, JR.
  • Publication number: 20150051149
    Abstract: Fibronectin type III (10Fn3) binding domains having novel designs that are associated with reduced immunogenicity are provided. The application describes alternative 10Fn3 binding domains in which certain immunogenic regions are not modified when producing a binder in order to maintain recognition as a self antigen by the host organism. The application also describes 10Fn3 binding domains in which HLA anchor regions have been destroyed thereby reducing the immunogenic contribution of the adjoining region. Also provided are 10Fn3 domains having novel combinations of modified regions that can bind to a desired target with high affinity.
    Type: Application
    Filed: October 31, 2012
    Publication date: February 19, 2015
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Jonathan Davis, Dasa Lipovsek, Ray Camphausen
  • Publication number: 20150024464
    Abstract: Aspects of the invention provide engineered endonucleases that are characterized by both a long recognition sequence and specific cleavage outside of the recognition site. Engineered endonucleases of the invention are useful for manipulating long pieces of DNA.
    Type: Application
    Filed: May 5, 2014
    Publication date: January 22, 2015
    Applicant: Celexion, LLC
    Inventors: Shaun M. Lippow, Dasa Lipovsek, Patricia M. Aha
  • Patent number: 8933199
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: January 13, 2015
    Assignee: Bristol-Myers Squibb Company
    Inventors: Sharon Cload, Linda Engle, Dasa Lipovsek, Malavi Madireddi, Ginger Chao Rakestraw, Joanna Swain, Wenjun Zhao, Martin J. Corbett, Alexander T. Kozhich
  • Publication number: 20140309163
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Application
    Filed: May 12, 2014
    Publication date: October 16, 2014
    Inventors: Sharon CLOAD, Linda ENGLE, Dasa LIPOVSEK, Malavi MADIREDDI, Ginger Chao RAKESTRAW, Joanna SWAIN, Wenjun ZHAO, Martin J. Corbett, Alexander T. Kozhich
  • Patent number: 8853154
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: October 7, 2014
    Assignee: Bristol-Myers Squibb Company
    Inventors: Sharon Cload, Linda Engle, Dasa Lipovsek, Malavi Madireddi, Ginger Chao Rakestraw, Joanna Swain, Wenjun Zhao, Hui Wei, Aaron P. Yamniuk, Vidhyashankar Ramamurthy, Alexander T. Kozhich, Martin J. Corbett, Stanley Richard Krystek, Jr.
  • Publication number: 20140179551
    Abstract: This application provides an improved screening method for the selection of target-binding proteins having desirable biophysical properties. The method combines mRNA display and yeast surface display in a way that takes advantage of the desirable attributes of both processes.
    Type: Application
    Filed: May 16, 2012
    Publication date: June 26, 2014
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventor: Dasa Lipovsek