Patents by Inventor Dave A. Hogsett

Dave A. Hogsett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337038
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a fatty acid or fatty acid derived product, wherein the modified microorganism produces fatty acyl-CoA intermediates via a malonyl-CoA dependent but malonyl-ACP independent mechanism.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: July 2, 2019
    Assignee: CARGILL, INCORPORATED
    Inventors: Michael Lynch, Michael Louie, Shelley Copley, Eileen Spindler, Brittany Prather, Matthew Lipscomb, Tanya Lipscomb, Hans Liao, Dave Hogsett, Ron Evans
  • Publication number: 20180273990
    Abstract: A microbial cell is used for producing at least one fatty acid ester, wherein the cell is genetically modified to contain (i) at least one first genetic mutation that enables the cell to produce at least one fatty acid and/or acyl coenzyme A (CoA) thereof by increased enzymatic activity in the cell relative to the wild type cell of malonyl-CoA dependent and malonyl-ACP independent fatty acyl-CoA metabolic pathway, wherein the fatty acid contains at least 5 carbon atoms; and (ii) a second genetic mutation that increases the activity of at least one wax ester synthase in the cell relative to the wild type cell and the wax ester synthase has sequence identity of at least 50% to a polypeptide of SEQ ID NO: 1-8 and combinations thereof or to a functional fragment of any of the polypeptides for catalyzing the conversion of fatty acid and/or acyl coenzyme A thereof to the fatty acid ester.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 27, 2018
    Inventors: Katrin GRAMMANN, Jan WOLTER, Liv REINECKE, Steffen SCHAFFER, Eileen E. SPINDLER, Wendy K. RIBBLE, Brittany L. PRATHER, Catherine B. POOR, Tanya Warnecke LIPSCOMB, Hans H. LIAO, Dave A. HOGSETT, Ronald J. EVANS
  • Patent number: 9944959
    Abstract: A microbial cell is used for producing at least one fatty acid ester, wherein the cell is genetically modified to contain (i) at least one first genetic mutation that enables the cell to produce at least one fatty acid and/or acyl coenzyme A (CoA) thereof by increased enzymatic activity in the cell relative to the wild type cell of malonyl-CoA dependent and malonyl-ACP independent fatty acyl-CoA metabolic pathway, wherein the fatty acid contains at least 5 carbon atoms; and (ii) a second genetic mutation that increases the activity of at least one wax ester synthase in the cell relative to the wild type cell and the wax ester synthase has sequence identity of at least 50% to a polypeptide of SEQ ID NO: 1-8 and combinations thereof or to a functional fragment of any of the polypeptides for catalyzing the conversion of fatty acid and/or acyl coenzyme A thereof to the fatty acid ester.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: April 17, 2018
    Assignee: CARGILL, INCORPORATED
    Inventors: Katrin Grammann, Jan Wolter, Liv Reinecke, Steffen Schaffer, Eileen C. Spindler, Wendy K. Ribble, Brittany L. Prather, Catherine B. Poor, Tanya Warnecke Lipscomb, Hans H. Liao, Dave A. Hogsett, Ronald J. Evans
  • Patent number: 9546385
    Abstract: One aspect of the invention relates to industrial bioconversion of the xylose portion of biomass materials into fuels and chemicals. Another aspect of the invention relates to industrial bioconversion of the xylan portion of biomass materials into fuels and chemicals. In one embodiment, the invention is directed to the bacterium Clostridium thermocellum, a highly cellulolytic organism that has much potential as a biocatalyst in a consolidated bioprocess configuration. In some embodiments, the invention is a genetic modification that confers the ability to ferment xylose to C. thermocellum and the strains created with this modification. In some embodiments, the genetic modification is composed of two genes contained in an operon from T. saccharolyticum. The genes express proteins with xylose isomerase (XI) and xylulokinase activites (XK). In other embodiments, the invention relates to a recombinant Clostridium thermocellum host cell capable of fermenting xylan.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: January 17, 2017
    Assignee: Enchi Corporation
    Inventors: Aaron Argyros, Trisha Barrett, Nicky Caiazza, Dave Hogsett
  • Publication number: 20160257975
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a fatty acid or fatty acid derived product, wherein the modified microorganism produces fatty acyl-CoA intermediates via a malonyl-CoA dependent but malonyl-ACP independent mechanism.
    Type: Application
    Filed: July 18, 2014
    Publication date: September 8, 2016
    Applicant: Cargill, Incorporated
    Inventors: Michael LYNCH, Michael LOUIE, Shelley COPLEY, Eileen SPINDLER, Brittany PRATHER, Matthew LIPSCOMB, Tanya LIPSCOMB, Hans LIAO, Dave HOGSETT, Ron EVANS
  • Publication number: 20160060663
    Abstract: A microbial cell is used for producing at least one fatty acid ester, wherein the cell is genetically modified to contain (i) at least one first genetic mutation that enables the cell to produce at least one fatty acid and/or acyl coenzyme A (CoA) thereof by increased enzymatic activity in the cell relative to the wild type cell of malonyl-CoA dependent and malonyl-ACP independent fatty acyl-CoA metabolic pathway, wherein the fatty acid contains at least 5 carbon atoms; and (ii) a second genetic mutation that increases the activity of at least one wax ester synthase in the cell relative to the wild type cell and the wax ester synthase has sequence identity of at least 50% to a polypeptide of SEQ ID NO: 1-8 and combinations thereof or to a functional fragment of any of the polypeptides for catalyzing the conversion of fatty acid and/or acyl coenzyme A thereof to the fatty acid ester.
    Type: Application
    Filed: September 2, 2015
    Publication date: March 3, 2016
    Applicant: EVONIK INDUSTRIES AG
    Inventors: Katrin GRAMMANN, Jan Wolter, Liv Reinecke, Steffen Schaffer, Eileen C. Spindler, Wendy K. Ribble, Brittany L. Prather, Catherine B. Poor, Tanya Warnecke Lipscomb, Hans H. Liao, Dave A. Hogsett, Ronald J. Evans
  • Publication number: 20140370561
    Abstract: One aspect of the invention relates to industrial bioconversion of the xylose portion of biomass materials into fuels and chemicals. Another aspect of the invention relates to industrial bioconversion of the xylan portion of biomass materials into fuels and chemicals. In one embodiment, the invention is directed to the bacterium Clostridium thermocellum, a highly cellulolytic organism that has much potential as a biocatalyst in a consolidated bioprocess configuration. In some embodiments, the invention is a genetic modification that confers the ability to ferment xylose to C. thermocellum and the strains created with this modification. In some embodiments, the genetic modification is composed of two genes contained in an operon from T. saccharolyticum. The genes express proteins with xylose isomerase (XI) and xylulokinase activites (XK). In other embodiments, the invention relates to a recombinant Clostridium thermocellum host cell capable of fermenting xylan.
    Type: Application
    Filed: December 22, 2011
    Publication date: December 18, 2014
    Applicant: Mascoma Corporation
    Inventors: Aaron Argyros, Trisha Barrett, Nicky Caiazza, Dave Hogsett