Patents by Inventor Dave G. Rich

Dave G. Rich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250239868
    Abstract: A method for controlling a plurality of energy storage elements in a vehicle having a first power bus and a second power bus includes, for a first time interval, connecting a first subset of the plurality of energy storage elements to the first power bus and a second subset of the plurality of energy storage elements to the second power bus; and for a second time interval, connecting the first subset of energy storage elements to the second power bus and the second subset of energy storage elements to the first power bus to increase equalization of states of charge between the first subset of energy storage elements and the second subset of energy storage elements.
    Type: Application
    Filed: January 18, 2024
    Publication date: July 24, 2025
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-mo Kang, Manjit Swami, Dave G. Rich, Davin A. Jankovics, Aaditya Geed
  • Patent number: 12368314
    Abstract: A battery system includes: first and second positive terminals and a negative terminal; switches; at least two battery modules, each of the battery modules including at least three strings of battery cells configured to, at different times be: connected in series and to the first positive terminal via first ones of the switches; connected in parallel and to the second positive terminal via second ones of the switches; and disconnected from both of the first and second positive terminals; and a switch control module configured to: receive temperatures of the strings of battery cells, respectively; determine temperatures of the battery modules, respectively, based on the temperatures of the strings of battery cells of that battery module; and selectively actuate the switches based on at least one of: minimizing an error between the temperatures of the strings of battery cells; and minimizing an error between the temperatures of the battery modules.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: July 22, 2025
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-mo Kang, Dave G. Rich
  • Patent number: 12362403
    Abstract: Presented are electrochemical devices with in-stack pressure sensors, methods for making/using such devices, and battery cells with electrode stacks having an electrode separator assembly with a piezoelectric layer for in-stack pressure sensing and dendrite cleaning. An electrochemical device, such as a lithium-class secondary battery cell for example, includes a device housing with an ion-conducting electrolyte located inside the device housing. A stack of working electrodes is also located inside the device housing, in electrochemical contact with the electrolyte. At least one electrode separator assembly is located inside the device housing, interposed between a neighboring pair of the working electrodes. The electrode separator assembly includes a pair of separator layers that transmit therethrough the ions of the electrolyte, and a piezoelectric layer that is interposed between the two separator layers.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: July 15, 2025
    Assignee: GM Global Technology Operations LLC
    Inventors: Jing Gao, Zhe Li, Xingcheng Xiao, Brian J. Koch, Michael A Lelli, Dave G. Rich
  • Patent number: 12325325
    Abstract: A battery system includes at least one battery including a plurality of cells and a hybrid control module configured to monitor a differential capacity of the at least one battery, determine when the monitored differential capacity of the at least one battery corresponds to a predetermined differential capacity of the at least one battery, and determine a state of charge of the battery in response to the determination that the monitored differential capacity corresponds to the predetermined differential capacity.
    Type: Grant
    Filed: January 5, 2023
    Date of Patent: June 10, 2025
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Saad Hasan, Dave G. Rich
  • Patent number: 12255472
    Abstract: A battery system includes: two battery modules, each including three strings of battery cells that are configured to, at different times be: connected in series and to a first positive terminal via first ones of switches; connected in parallel and to a second positive terminal via second ones of the switches; and disconnected from both of the first and second positive terminals; and a switch control module configured to: determine state of charges (SOCs) of the strings, respectively; determine periods of phases, respectively, based on the SOCs; determine first periods for connecting ones of the strings in parallel; divide one of the phases into N equal length periods; selectively decrease N; when a number of the first periods that end closest to one of N period endings is at least a predetermined value, adjust the first periods to the respective closest ones of the N period endings.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: March 18, 2025
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-mo Kang, Charles W. Wampler, II, Dave G. Rich
  • Patent number: 12249854
    Abstract: A battery system includes: a first positive terminal, a second positive terminal, and a negative terminal; at least two battery modules, each including switches and at least three strings of battery cells configured to, via the switches, at different times be: connected in series and to the first positive terminal; connected in parallel and to the second positive terminal; and disconnected from both of the first and second positive terminals; and a switch control module configured to, when a fault is diagnosed in one of the strings of one of the battery modules: at least one of: actuate the switches and isolate the one of the battery modules from the first and second positive terminals; and actuate the switches and isolate the one of the strings from the first and second positive terminals; and selectively actuate the switches of the remainder of the battery modules using model predictive control.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: March 11, 2025
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-mo Kang, Chen-Fang Chang, Dave G. Rich
  • Patent number: 12244162
    Abstract: A battery system includes: at least two battery modules, where each of the at least two battery modules includes three strings of battery cells; and a switch control module configured to: determine state of charges (SOCs) of the strings of battery cells, respectively; determine, using model predictive control based on the SOCs, periods of phases, respectively; determine, using model predictive control based on the SOCs, periods for the strings, respectively, to be connected to a second positive terminal and a negative terminal during the phases, the determination of the periods for the strings including: setting the period for one of the strings of one of the battery modules to end before the end of a phase; and setting the periods for the other two strings of the one of the battery modules to end at the end of the phase.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: March 4, 2025
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun-mo Kang, Charles W. Wampler, II, Dave G. Rich
  • Patent number: 12211984
    Abstract: A thermal device comprises a first layer of a non-metallic material that is a good conductor of heat and electricity, that includes a first terminal and a second terminal, and that has a first surface and a second surface; a metallic material disposed on the first surface of the first layer; a first plastic layer disposed on the metallic material; and a second plastic layer disposed on the second surface of the first layer. The first plastic layer and the second plastic layer include a plastic material that is a good conductor of heat.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: January 28, 2025
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen Kong, Dave G. Rich, Lyall K. Winger, Meiyuan Wu, Jingyuan Liu, Haijing Liu
  • Patent number: 12191686
    Abstract: A system for modular dynamically adjustable capacity storage for a vehicle is provided. The system includes a battery pack including a plurality of battery cells, a negative terminal including a chassis ground connection, and a plurality of positive battery pack terminals. The negative terminal and the plurality of positive battery pack terminals are useful for connecting at least one electrical circuit through the battery pack. The system further includes a battery cell switching system, including a plurality of solid-state switches connected to each of the battery cells. The plurality of solid-state switches is operable to selectively connect a portion of the battery cells in parallel, selectively connect the portion of the battery cells in series, and selectively connect one of the plurality of battery cells to one of the plurality of positive battery pack terminals.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 7, 2025
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Dave G. Rich, Lyall K. Winger, Suresh Gopalakrishnan
  • Publication number: 20240396077
    Abstract: A solid-state battery cell includes an anode electrode comprising an anode current collector, anode active material, a solid electrolyte, and a gel polymer electrolyte. A cathode electrode comprises a cathode current collector, a cathode active material, a solid electrolyte, and the gel polymer electrolyte. A separator layer comprises the gel polymer electrolyte and a solid electrolyte composite including a solid electrolyte coating arranged on an outer surface of an oxide core.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 28, 2024
    Inventors: Zhe LI, Qili SU, Yong LU, Dave G. RICH, Haijing LIU
  • Publication number: 20240347871
    Abstract: A battery includes: a positive output terminal; a negative output terminal; a first battery module that is connected to the positive output terminal and the negative output terminal and that includes: a first string of first and second types of battery cells that are electrically connected in series, where the first type is different than the second type; and a second battery module that is electrically connected in parallel with the first battery module and that includes: a second string of the first and second types of battery cells that are electrically connected in series.
    Type: Application
    Filed: July 31, 2023
    Publication date: October 17, 2024
    Inventors: Jingyuan Liu, Dewen Kong, Zhe Li, Haijing Liu, Dave G. Rich
  • Publication number: 20240283057
    Abstract: A solid-state battery cell includes an anode electrode comprising an anode current collector and an anode coating. A cathode electrode comprises a cathode current collector and a cathode coating, wherein the anode electrode and the cathode electrode exchange lithium ions. A separator layer is arranged between the anode electrode and the cathode electrode. A first capacitor electrode is arranged at least one of between the anode coating and a first side of the separator layer, between the anode coating and the anode current collector, between a second side of the separator layer and the cathode coating, and between the cathode coating and the cathode current collector.
    Type: Application
    Filed: July 27, 2023
    Publication date: August 22, 2024
    Inventors: Yong LU, Zhe Li, Qili SU, Dave G. RICH, Haijing LIU
  • Publication number: 20240282970
    Abstract: An electrode for a lithium-ion battery cell includes a first region having a first thickness and including an active material comprising a first wt % of the first region and a solid electrolyte comprising a second wt % of the first region. A second region has a second thickness and includes the active material comprising a third wt % of the second region and the solid electrolyte comprising a fourth wt % of the second region. The first region and the second region are arranged adjacent to one another. The first wt % is greater than the third wt % and the second wt % is less than the fourth wt %.
    Type: Application
    Filed: June 16, 2023
    Publication date: August 22, 2024
    Inventors: Qili SU, Zhe Li, Yong Lu, Haijing Liu, Dave G. Rich
  • Publication number: 20240283009
    Abstract: A method for preparing an electrolyte layer supported by a dry process electrode layer, the method includes providing a sulfide electrolyte layer; providing a first dry process electrode layer; arranging a first side of the sulfide electrolyte layer adjacent to a first side of the first dry process electrode layer; and calendaring the sulfide electrolyte layer and the first dry process electrode layer to reduce a thickness of the sulfide electrolyte layer to a predetermined thickness in a range from approximately 5 micrometers (?m) to approximately 50 ?m.
    Type: Application
    Filed: July 26, 2023
    Publication date: August 22, 2024
    Inventors: Qili SU, Zhe Li, Meiyuan Wu, Dave G. Rich, Yong Lu, Haijing Liu, Mark W. Verbrugge
  • Publication number: 20240274980
    Abstract: A functionalized separator for a battery cell includes a separator layer including a first side and a second side. A functionalized layer is arranged on at least one of the first side and the second side of the separator layer. The functionalized layer comprises a lithium-ion conducting solid electrolyte and a capacitor active material.
    Type: Application
    Filed: August 4, 2023
    Publication date: August 15, 2024
    Inventors: Zhe LI, Meiyuan WU, Qili SU, Dave G. Rich, Yong Lu, Haijing LIU
  • Publication number: 20240270121
    Abstract: A state of charge (SOC) balancing system includes: first and second batteries; first and second capacitors; an SOC module configured to determine first and second SOCs of the first and second batteries, respectively; and a switching module configured to selectively, when the first SOC is greater than the second SOC: (i) electrically connect the first and second capacitors in parallel; (ii) electrically connect the first battery to the first and second capacitors while the first and second capacitors are electrically connected in parallel; (iii) electrically disconnect the first battery from the first and second capacitors; (iv) electrically connect the first and second capacitors in series; (v) electrically connect the second battery to the first and second capacitors while the first and second capacitors are electrically connected in series; and (vi) electrically disconnect the second battery from the first and second capacitors.
    Type: Application
    Filed: July 26, 2023
    Publication date: August 15, 2024
    Inventors: Jingyuan LIU, Qili SU, Dave G. RICH, Si CHEN, James MORRISON, Dewen KONG, Haijing LIU
  • Publication number: 20240272236
    Abstract: A bipolar battery system includes N battery cells. Each of the N battery cells comprises M cores each comprising a first current collector, cathode active material, a separator, anode active material, and a second current collector, where M is an integer greater than one. The M cores are connected in parallel by connecting the first current collectors of the M cores in each of the N battery cells together and by connecting the second current collectors of the M cores in each of the N battery cells together. N-1 clad plates are arranged between adjacent ones of the N battery cells and the N battery cells are connected in series by the N-1 clad plates. A voltage sensing system connects to the N-1 tabs, a first terminal, and a second terminal and is configured to determine N voltages across the N battery cells, respectively.
    Type: Application
    Filed: July 28, 2023
    Publication date: August 15, 2024
    Inventors: Yong LU, Meiyuan Wu, Zhe LI, Dave G. Rich, Haijing Liu
  • Publication number: 20240274984
    Abstract: A battery cell including an anode electrode layer including an anode active material. A cathode electrode layer comprises cathode active material. A solid electrolyte layer is arranged between the anode electrode layer and the cathode electrode layer. An elastomeric layer is arranged between the anode electrode layer and the solid electrolyte layer.
    Type: Application
    Filed: July 27, 2023
    Publication date: August 15, 2024
    Inventors: Zhe Li, Qili Su, Dave G. Rich, Yong Lu, Haijing Liu
  • Publication number: 20240222775
    Abstract: A modular bipolar solid-state battery includes T solid-state battery modules, where T is an integer greater than one. Each of the T solid-state battery modules includes an enclosure, a first terminal arranged on a first side of the enclosure, a second terminal arranged on a second side of the enclosure opposite to the first side of the enclosure, and N solid-state battery cells arranged and interconnected in the enclosure, where N is an integer greater than one. The T solid-state battery modules are connected in at least one of series and parallel. A positive terminal of the modular bipolar solid-state battery is connected to at least one of the T solid-state battery modules. A negative terminal of the modular bipolar solid-state battery is connected to at least another one of the T solid-state battery modules.
    Type: Application
    Filed: April 11, 2023
    Publication date: July 4, 2024
    Inventors: Qili SU, Zhe LI, Meiyuan WU, Haijing LIU, Dave G. Rich
  • Patent number: 12024059
    Abstract: A vehicle system is provided and includes a modular dynamically allocated capacity storage system (MODACS) and an active management module. The MODACS includes blocks of cells. The active management module is configured to: detect a first state of a first block of cells of the blocks of cells; determine whether a safety fault condition exists with the first block of cells based on the first state of the first block of cells; in response to detecting existence of the safety fault condition, isolate the first block of cells from other ones of the blocks of cells; subsequent to isolating the first block of cells, actively discharge and detect a second state of the first block of cells; and based on the second state, continue isolating the first block of cells or reconnecting the first block of cells such that the first block of cells is no longer isolated.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: July 2, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen Kong, Dave G. Rich, Lyall K. Winger, Aaron B. Bloom, Jingyuan Liu, Meiyuan Wu, Haijing Liu