Patents by Inventor Dave Hui

Dave Hui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11450447
    Abstract: This disclosure relates to a method of manufacturing an electrically conductive thick film comprising steps of: (a) applying a fine silver particle dispersion on a substrate, wherein the fine silver particle dispersion comprises, (i) 60 to 95 wt. % of fine silver particles, wherein particle diameter (D50) of the fine silver particles is 50 to 300 nm, (ii) 4.5 to 39 wt. % of a solvent; and (iii) 0.1 to 3 wt. % of a resin, wherein the glass transition temperature (Tg) of the resin is 70 to 300° C., wherein the weight percentages are based on the weight of the fine silver particle dispersion; and (b) heating the applied fine silver particle dispersion at 80 to 1000° C.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: September 20, 2022
    Assignee: SOLAR PASTE, LLC
    Inventors: Dave Hui, Michael Stephen Wolfe, Howard David Glicksman, Haixin Yang, Takashi Hinotsu, Shingo Teragawa
  • Patent number: 11441010
    Abstract: This disclosure relates to a fine silver particle dispersion comprising: (i) 60 to 95 wt. % of fine silver particles, wherein particle diameter (D50) of the fine silver particles is 50 to 300 nm, (ii) 4.5 to 39 wt. % of a solvent; and (iii) 0.1 to 3 wt. % of a resin, wherein the glass transition temperature (Tg) of the resin is 70 to 300° C., wherein the weight percentages are based on the weight of the fine silver particle dispersion.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: September 13, 2022
    Assignee: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shingo Teragawa, Takashi Hinotsu, Dave Hui, Michael Stephen Wolfe, Howard David Glicksman, Haixin Yang
  • Patent number: 11227702
    Abstract: This disclosure relates to a fine silver particle dispersion including: (1) 65 to 95.4% by weight of fine silver particles which have an average primary particle diameter of 10 to 190 nm and which comprise 25% by number or less of silver particles having a primary particle diameter of 100 nm or larger, (2) 4.5 to 34.5% by weight of a solvent, and (3) 0.1 to 1.0% by weight of ethyl cellulose having a weight average molecular weight of 10,000 to 120,000.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: January 18, 2022
    Assignee: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shingo Teragawa, Takashi Hinotsu, Dave Hui, Michael Stephen Wolfe, Howard David Glicksman, Haixin Yang
  • Patent number: 11072715
    Abstract: This disclosure relates to a conductive paste comprising a fine silver particle dispersion and a glass frit, wherein the fine silver particle dispersion comprising: (1) 65 to 95.4% by weight of fine silver particles which have average primary particle diameter of 10 to 190 nm and which comprise 25% by number or less of silver particles having primary particle diameter of 100 nm or larger, (2) 4.5 to 34.5% by weight of a solvent, (3) 0.1 to 1.0% by weight of ethyl cellulose having weight average molecular weight of 10,000 to 120,000. Also provided are: a method of manufacturing an electrically conductive thick film comprising steps of: (a) applying said fine silver particle dispersion on a substrate, and (b) heating the applied fine silver particle dispersion at 80 to 1000° C.; and an electrical device comprising a conductive thick film made with the foregoing paste.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: July 27, 2021
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Dave Hui, Michael Stephen Wolfe, Howard David Glicksman, Haixin Yang, Takashi Hinotsu, Shingo Teragawa
  • Publication number: 20200317935
    Abstract: This disclosure relates to a conductive paste comprising a fine silver particle dispersion and a glass frit, wherein the fine silver particle dispersion comprising: (1) 65 to 95.4% by weight of fine silver particles which have average primary particle diameter of 10 to 190 nm and which comprise 25% by number or less of silver particles having primary particle diameter of 100 nm or larger, (2) 4.5 to 34.5% by weight of a solvent, (3) 0.1 to 1.0% by weight of ethyl cellulose having weight average molecular weight of 10,000 to 120,000. Also provided are: a method of manufacturing an electrically conductive thick film comprising steps of: (a) applying said fine silver particle dispersion on a substrate, and (b) heating the applied fine silver particle dispersion at 80 to 1000 ° C.; and an electrical device comprising a conductive thick film made with the foregoing paste.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 8, 2020
    Inventors: Dave Hui, Michael Stephen Wolfe, Howard David Glicksman, Haixin Yang, Takashi Hinotsu, Shingo Teragawa
  • Publication number: 20200321139
    Abstract: This disclosure relates to a fine silver particle dispersion including: (1) 65 to 95.4% by weight of fine silver particles which have an average primary particle diameter of 10 to 190 nm and which comprise 25% by number or less of silver particles having a primary particle diameter of 100 nm or larger, (2) 4.5 to 34.5% by weight of a solvent, and (3) 0.1 to 1.0% by weight of ethyl cellulose having a weight average molecular weight of 10,000 to 120,000.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 8, 2020
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shingo TERAGAWA, Takashi HINOTSU, Dave HUI, Michael Stephen WOLFE, Howard David GLICKSMAN, Haixin YANG
  • Publication number: 20190103200
    Abstract: This disclosure relates to a method of manufacturing an electrically conductive thick film comprising steps of: (a) applying a fine silver particle dispersion on a substrate, wherein the fine silver particle dispersion comprises, (i) 60 to 95 wt. % of fine silver particles, wherein particle diameter (D50) of the fine silver particles is 50 to 300 nm, (ii) 4.5 to 39 wt. % of a solvent; and (iii) 0.1 to 3 wt. % of a resin, wherein the glass transition temperature (Tg) of the resin is 70 to 300° C., wherein the weight percentages are based on the weight of the fine silver particle dispersion; and (b) heating the applied fine silver particle dispersion at 80 to 1000° C.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
    Inventors: Dave Hui, Michael Stephen Wolfe, Howard David Glicksman, Haixin Yang, Takashi Hinotsu, Shingo Teragawa
  • Publication number: 20190100641
    Abstract: This disclosure relates to a fine silver particle dispersion comprising: (i) 60 to 95 wt. % of fine silver particles, wherein particle diameter (D50) of the fine silver particles is 50 to 300 nm, (ii) 4.5 to 39 wt. % of a solvent; and (iii) 0.1 to 3 wt. % of a resin, wherein the glass transition temperature (Tg) of the resin is 70 to 300° C., wherein the weight percentages are based on the weight of the fine silver particle dispersion.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shingo TERAGAWA, Takashi HINOTSU, Dave HUI, Michael Stephen WOLFE, Howard David GLICKSMAN, Haixin YANG
  • Patent number: 9840651
    Abstract: A flowable, (e.g., screen printable, stencil printable and/or dispensable) thermally conductive paste is disclosed and provide low temperature curing or firing. The pastes are useful in forming thermally conductive pathways for electronic type applications, such as, providing thermal conduction between a semiconductor chip and its associate semiconductor chip packaging (e.g. power electronic applications), which can be useful in power converters, electrical power steering modules, car head lights (LEDs), solar cells, printed circuit boards (PCBs), plasma display panels (PDPs), and the like. The pastes have a combination of conductive flakes and particles in a minimal amount of carrier fluid and carrier resin to provide advantageous deposition and heat melding properties.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: December 12, 2017
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Dave Hui, John McKean Oleksyn, Jason Kenneth Parsons, Gareth Michael Fuge
  • Patent number: 9245664
    Abstract: A conductive metal composition comprising 50 to 94 wt % of silver particles having an average particle size in the range of 40 to 450 nm and having an aspect ratio of 3 to 1:1, 1 to 4 wt % of a thermoplastic polyester resin having a weight-average molar mass of 10000 to 150000, and 4 to 49 wt % of a diluent for the thermoplastic polyester resin.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: January 26, 2016
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Daniel Kirk, Dave Hui, Martin Sweet
  • Patent number: 9245665
    Abstract: A conductive metal composition comprising 40 to 88 wt % of silver particles having an average particle size in the range of 10 to 100 nm and having an aspect ratio of 3 to 1:1, 2 to 20 wt % of a poly(2-ethyl-2-oxazoline) resin having a weight-average molar mass of 50,000 to 500,000 and 10 to 58 wt % of a solvent for the poly(2-ethyl-2-oxazoline) resin.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: January 26, 2016
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Dave Hui, John D Summers
  • Publication number: 20160009976
    Abstract: A flowable, (e.g., screen printable, stencil printable and/or dispensable) thermally conductive paste is disclosed and provide low temperature curing or firing. The pastes are useful in forming thermally conductive pathways for electronic type applications, such as, providing thermal conduction between a semiconductor chip and its associate semiconductor chip packaging (e.g. power electronic applications), which can be useful in power converters, electrical power steering modules, car head lights (LEDs), solar cells, printed circuit boards (PCBs), plasma display panels (PDPs), and the like. The pastes have a combination of conductive flakes and particles in a minimal amount of carrier fluid and carrier resin to provide advantageous deposition and heat melding properties.
    Type: Application
    Filed: July 6, 2015
    Publication date: January 14, 2016
    Inventors: DAVE HUI, JOHN MCKEAN OLEKSYN, JASON KENNETH PARSONS, GARETH MICHAEL FUGE
  • Publication number: 20150240103
    Abstract: The present invention is directed to compositions for high speed printing of conductive materials for electronic circuitry type applications. These compositions are dispersions having a continuous (e.g., solvent) phase and a discontinuous phase. The discontinuous phase includes a plurality of nanoparticles stabilized with a thermally decomposable stabilizer. The thermally decomposable stabilizer is an ?-b-?-Y block co-polymer or oligomer where: i. ? is a polymeric block or series of polymeric blocks that swell and suspend in the continuous phase; ii. b indicates a covalent bond between ? and ?; iii. ? comprises at least one moiety from the group consisting of tertiary amines, electron rich aromatics, acrylates, methacrylates and combinations thereof; and iv. Y is a dithioester, a xanthate, a dithiocarbamate, a trithiocarbonate or a combination thereof.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 27, 2015
    Inventors: WILLIAM BROWN FARNHAM, Dave Hui
  • Publication number: 20140349025
    Abstract: A conductive composition is disclosed, In one embodiment, the composition comprises 40 to 90 wt % of silver particles having an average particle size in the range of 10 to 450 nm and having an aspect ratio of 3 to 1:1, 2 to 20 wt % of an alkyl carbonyl macromolecule resin having a weight-average molar mass of 4,000 to 200,000 and 10 to 58 wt % of a diluent for the resin. In one embodiment, the resin is ethyl cellulose.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 27, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: DAVE HUI, GARETH JAMES GRIFFITHS
  • Publication number: 20140170334
    Abstract: A conductive metal composition comprising 40 to 88 wt % of silver particles having an average particle size in the range of 10 to 100 nm and having an aspect ratio of 3 to 1:1, 2 to 20 wt % of a poly(2-ethyl-2-oxazoline) resin having a weight-average molar mass of 50,000 to 500,000 and 10 to 58 wt % of a solvent for the poly(2-ethyl-2-oxazoline) resin.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 19, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: DAVE HUI, JOHN D. SUMMERS
  • Publication number: 20130142963
    Abstract: A conductive metal composition comprising 50 to 94 wt % of silver particles having an average particle size in the range of 40 to 450 nm and having an aspect ratio of 3 to 1:1, 1 to 4 wt % of a thermoplastic polyester resin having a weight-average molar mass of 10000 to 150000, and 4 to 49 wt % of a diluent for the thermoplastic polyester resin.
    Type: Application
    Filed: May 4, 2012
    Publication date: June 6, 2013
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: DANIEL KIRK, Dave Hui, Martin Sweet