Patents by Inventor Dave Narasimhan

Dave Narasimhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6455175
    Abstract: An composition for electroless plating of rhodium onto a substrate, a process for plating a uniform coating of rhodium onto various substrates using an electroless plating composition, and a rhodium plated article formed therefrom. The plating composition is an aqueous solution of triamminetris(nitrito-N,N,N)rhodium(III); ammonium hydroxide; and hydrazine hydrate.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: September 24, 2002
    Assignee: Honeywell International Inc.
    Inventors: Alexander S. Kozlov, Thirumalai Palanisamy, Dave Narasimhan
  • Patent number: 6391477
    Abstract: This invention relates to electroless autocatalytic plating of platinum onto a substrate, an aqueous platinum plating bath, a process for plating a uniform coating of platinum onto various substrates using an electroless autocatalytic plating composition, and a platinum plated article formed therefrom. The plating bath of this invention allows direct autocatalytic plating of platinum on catalytically active and inactive, conductive and non-conductive substrates, avoiding the extra costs of activating a catalytically inactive substrate.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: May 21, 2002
    Assignee: Honeywell International Inc.
    Inventors: Alexander S. Koslov, Thirumalai Palanisamy, Dave Narasimhan
  • Patent number: 6387542
    Abstract: This invention relates to electroless plating of silver onto a substrate, an aqueous silver plating bath, a process for plating a uniform coating of silver onto various substrates using an electroless plating composition, and a silver plated article formed therefrom. The plating bath neither contains nor generates toxic or flammable substances or substances that may contaminate the silver coating. By avoiding strong complexing agents, virtually pure silver may be precipitated from the bath by simple boiling. Silver electroless autocatalytic plating bath consists of silver nitrate, ammonium hydroxide and hydrazine hydrate.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: May 14, 2002
    Assignee: Honeywell International Inc.
    Inventors: Alexander S. Kozlov, Thirumalai Palanisamy, Dave Narasimhan
  • Patent number: 6363610
    Abstract: A method for making a bimetallic ring seal having a nickel core covered by a first layer of platinum having a inner dense portion and a second outer portion both of which plastically deform in the presence of a load. The method includes the step of applying a porous layer of platinum over the dense layer by electroless plating in a platinum bath comprising 0.8-1.2 gram/liter platinum as diammine dinitrite salt Pt(NH3)2(NO2)2, 50-100 milliliter/liter of 25% ammonium hydroxide NH4OH; and 0.3-1.5 gram/liter hydrazine hydrate N2H4—H2O, at a temperature in the range of 75-90° C. and at a plating rate in the range of 0.5-3.0 micron/hour and then plastically deforming the ring seal under load.
    Type: Grant
    Filed: October 21, 1999
    Date of Patent: April 2, 2002
    Assignee: Allied Signal, Inc.
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Steve H. Halfmann, Mark C. Morris, Thomas E. Strangman
  • Patent number: 6342171
    Abstract: A carbon-carbon composite material is made by providing an open-celled carbon foam preform, and densifying the preform with carbonaceous material. The open-celled carbon foam preform may be oxygen stabilized prior to carbonization, and the foam preform densified by CVD, HIP, PIC, VPI, pitch and resin injection, or any combination thereof. The carbon carbon composite material can be heat treated to provide thermal management materials, structural materials, or a friction material for use in a brake or clutch mechanism.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: January 29, 2002
    Assignee: AlliedSignal Inc.
    Inventors: Neil Murdie, Charles A. Parker, James F. Pigford, Dave Narasimhan, Frank Dillon
  • Patent number: 6323160
    Abstract: A carbon-carbon composite material is made by providing an open-celled carbon foam preform, and densifying the preform with carbonaceous material. The open-celled carbon foam preform may be oxygen stabilized prior to carbonization, and the foam preform densified by CVD, HIP, PIC, VPI, pitch and resin injection, or any combination thereof. The carbon-carbon composite material can be heat treated to provide thermal management materials, structural materials, or a friction material for use in a brake or clutch mechanism.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: November 27, 2001
    Assignee: AlliedSignal Inc.
    Inventors: Neil Murdie, Charles A. Parker, James F. Pigford, Dave Narasimhan, Frank Dillon
  • Publication number: 20010026770
    Abstract: A superelastic alloy exhibiting shape memory or pseudoelastic properties contains about 46.3 weight percent Au and about 54.7 weight percent In. Such alloys containing the superelastic Au—In2 intermetallic compound which exhibits elasticity can be formed into a gasket or seal that can be deformed at low stress levels while additionally having corrosion resistant properties.
    Type: Application
    Filed: February 16, 2001
    Publication date: October 4, 2001
    Inventors: Robert C. Morris, Dave Narasimhan, Raghib Hasan
  • Patent number: 6174605
    Abstract: Carbon—carbon composite parts are joined with minimum surface preparation. A reactive-bonding joint interlayer having thickness greater than 1 mil is formed of fine particles of carbide-forming metallic ingredients and carbon. The joint interlayer is sandwiched between the two carbon—carbon parts to be joined and the assembly is heated under a compressive pressure to a temperature sufficient to complete the bonding reaction. No special surface preparation is required for the carbon—carbon parts due to the nature of the reactive-bonding. The mechanical properties of the joint are assured by selecting the metal-carbon ingredients so that thermal expansion mismatch is minimized. Shear strength exhibited by the resulting joints is greater than the interlaminar shear strength of the carbon—carbon composite material.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: January 16, 2001
    Assignee: AlliedSignal Inc.
    Inventors: Liang An Xue, Dave Narasimhan
  • Patent number: 6132175
    Abstract: A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: October 17, 2000
    Assignee: AlliedSignal, Inc.
    Inventors: Hongda Cai, Dave Narasimhan, Thomas E. Strangman, Michael L. Easley, Bjoern Schenk
  • Patent number: 6122993
    Abstract: An energy storage flywheel having a benign failure mode, the rotor of which is constructed of a brittle, high specific strength, isotropic solid.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: September 26, 2000
    Assignee: AlliedSignal Inc.
    Inventors: Robert C. Morris, Dave Narasimhan, John Moody, Patrick Coronato
  • Patent number: 6077464
    Abstract: A carbon-carbon composite material is made by providing an open-celled carbon foam preform, and densifying the preform with carbonaceous material. The open-celled carbon foam preform may be oxygen stabilized prior to carbonization, and the foam preform densified by CVD, HIP, PIC, VPI, pitch and resin injection, or any combination thereof. The carbon-carbon composite material can be heat treated to provide thermal management materials, structural materials, or a friction material for use in a brake or clutch mechanism.
    Type: Grant
    Filed: November 14, 1997
    Date of Patent: June 20, 2000
    Assignee: AlliedSignal Inc.
    Inventors: Neil Murdie, Charles A. Parker, James F. Pigford, Dave Narasimhan, Frank Dillon
  • Patent number: 5972157
    Abstract: Carbon--carbon composite parts are joined with minimum surface preparation. A reactive-bonding joint interlayer having thickness greater than 1 mil is formed of fine particles of carbide-forming metallic ingredients and carbon. The joint interlayer is sandwiched between the two carbon--carbon parts to be joined and the assembly is heated under a compressive pressure to a temperature sufficient to complete the bonding reaction. No special surface preparation is required for the carbon--carbon parts due to the nature of the reactive-bonding. The mechanical properties of the joint are assured by selecting the metal-carbon ingredients so that thermal expansion mismatch is minimized. Shear strength exhibited by the resulting joints is greater than the interlaminar shear strength of the carbon--carbon composite material.
    Type: Grant
    Filed: August 20, 1996
    Date of Patent: October 26, 1999
    Assignee: AlliedSignal Inc.
    Inventors: Liang An Xue, Dave Narasimhan
  • Patent number: 5756225
    Abstract: Blades for use in combusion turbine engines are formed from a single crystal aluminum garnet body--desirably a rare earth aluminum garnet body--having an epitaxial surface layer of a second aluminum garnet having a lattice constant larger than that of the body garnet so as to provide a compressive strain, to thereby strengthen the blade.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: May 26, 1998
    Assignee: AlliedSignal Inc.
    Inventors: Robert C. Morris, Devlin M. Gualtieri, Dave Narasimhan, Philip J. Whalen
  • Patent number: 5704759
    Abstract: For use in a compressor unit of gas turbine engine, a blade having a tip portion. An abrasive portion is formed on the tip portion with the abrasive portion comprising a dispersion of discrete particles of cubic boron nitride disposed on the tip portion. A shroud is coated with a porous ceramic abradable material based on preferably 8% yttria-stabilized zirconia. The abrasive portion of the tip portion contacts the abradable material. In the preferred embodiment, the abradable material is treated with boron nitride composited polyester that is burned out of the material via thermal exposure to thereby improve porosity within the abradable material.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: January 6, 1998
    Assignee: AlliedSignal Inc.
    Inventors: Barry S. Draskovich, Norman E. Frani, Stephen S. Joseph, Dave Narasimhan
  • Patent number: 5573862
    Abstract: Blades for use in combusion turbine engine are formed from a single crystal garnet body--suitably an aluminum garnet, desirably a rare earth aluminum garnet--having an epitaxial surface layer of a second garnet having a lattice constant larger than that of the body garnet so as a compressive strain, to thereby strengthen the blade.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: November 12, 1996
    Assignee: AlliedSignal Inc.
    Inventors: Devlin M. Gualtieri, Robert C. Morris, Dave Narasimhan, Philip J. Whalen
  • Patent number: 5572725
    Abstract: Reinforcement fibers are formed from a single crystal garnet body--suitably an aluminum garnet, desirably a rare earth aluminum garnet--having an epitaxial surface layer of a second garnet having a lattice constant larger than that of the body garnet so as to provide a compressive strain, to thereby strengthen the fiber.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: November 5, 1996
    Assignee: AlliedSignal, Inc.
    Inventors: Robert C. Morris, Devlin M. Gualtieri, Dave Narasimhan, Philip J. Whalen
  • Patent number: 5348774
    Abstract: Porous solid bodies, especially carbon bodies, are densified by chemical vapor deposition by establishing a thermal gradient within the body, thermally decomposing a gaseous precursor so deposit an electrically and thermally conductive deposit (e.g. carbon) within the body, and shifting the thermal gradient toward the lower temperature zone as deposition proceeds, by means of induction heating.
    Type: Grant
    Filed: August 11, 1993
    Date of Patent: September 20, 1994
    Assignee: AlliedSignal Inc.
    Inventors: Ilan Golecki, Robert C. Morris, Dave Narasimhan
  • Patent number: 5287373
    Abstract: Solid state laser gain media of the composition Cr.sup.+3 :XYZF.sub.6 wherein X is an alkali metal ion; Y is an alkaline earth metal ion, Cd.sup.+2 or Mg.sup.+2 ; and Z is Al.sup.+3, Ga.sup.+3 or Sc.sup.+3 are provided with gradient Cr doping levels for reducing thermally generated stress/strain in the lasing operation.
    Type: Grant
    Filed: August 17, 1992
    Date of Patent: February 15, 1994
    Assignee: AlliedSignal Inc.
    Inventors: William R. Rapoport, Michael L. Shand, Dave Narasimhan