Patents by Inventor Dave Snyder

Dave Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080162701
    Abstract: A network-based interaction system includes a machine connected to the network for receiving and routing an interaction request, a server application having access to the network for matching an interaction request to a profile, and a data repository for storing profile information.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: Andrey Ryabchun, Petr Makagon, Herbert Ristock, Nikolay Anisimov, Dave Snyder, S. Michael Perlmutter
  • Patent number: 7207424
    Abstract: A mixture of carbon-containing fibers, such as mesophase or isotropic pitch fibers, a suitable matrix material, such as a milled pitch is compressed while resistively heating the mixture to form a carbonized composite material. Preferably, the carbonized material has a density of at least about 1.30 g/cm3. Preferably, the composite material is formed in less than ten minutes. This is a significantly shorter time than for conventional processes, which typically take several days and achieve a lower density material. A treating component may be impregnated into the composite. Consequently, carbon/carbon composite materials having final densities of about 1.6–1.8 g/cm3 or higher are readily achieved with one or two infiltration cycles using a pitch or other carbonaceous material to fill voids in the composite and rebaking.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: April 24, 2007
    Assignee: UCAR Carbon Company Inc.
    Inventors: Dai Huang, Dave Snyder, Richard T. Lewis, Irwin C. Lewis
  • Publication number: 20050051394
    Abstract: A mixture of carbon-containing fibers, such as mesophase or isotropic pitch fibers, a suitable matrix material, such as a milled pitch is compressed while resistively heating the mixture to form a carbonized composite material. Preferably, the carbonized material has a density of at least about 1.30 g/cm3. Preferably, the composite material is formed in less than ten minutes. This is a significantly shorter time than for conventional processes, which typically take several days and achieve a lower density material. A treating component may be impregnated into the composite. Consequently, carbon/carbon composite materials having final densities of about 1.6-1.8 g/cm3 or higher are readily achieved with one or two infiltration cycles using a pitch or other carbonaceous material to fill voids in the composite and rebaking.
    Type: Application
    Filed: November 24, 2003
    Publication date: March 10, 2005
    Inventors: Dai Huang, Richard Lewis, Irwin Lewis, Dave Snyder