Patents by Inventor David A. Basiji

David A. Basiji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080240539
    Abstract: Provided are methods for determining and analyzing photometric and morphogenic features of small objects, such as cells to, for example, identify different cell states. In particularly, methods are provided for identifying apoptotic cells, and for distinguishing between cells undergoing apoptosis versus necrosis.
    Type: Application
    Filed: March 16, 2005
    Publication date: October 2, 2008
    Applicant: Amins Corporation
    Inventors: Thaddeus C. George, David A. Basiji, Brian E. Hall, William E. Ortyn, Michael J. Seo, Philip J. Morrissey, Cathleen A. Zimmerman
  • Publication number: 20080234984
    Abstract: A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
    Type: Application
    Filed: June 3, 2008
    Publication date: September 25, 2008
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Keith Frost, Luchuan Liang, Richard Bauer, Brian Hall, David Perry
  • Publication number: 20080138816
    Abstract: The present invention provides methods for preparing cells with highly condensed chromosomes, such as sperm, and methods for detecting and quantifying specific cellular target molecules in intact cells. Specifically, methods are provided for detecting chromosomes and chromosomal abnormalities, including aneuploidy, in intact cells using fluorescence in situ hybridization of cells in suspension, such as sperm cells.
    Type: Application
    Filed: August 13, 2007
    Publication date: June 12, 2008
    Applicant: AMNIS CORPORATION
    Inventors: James Brawley, Philip J. Morrissey, Rosalynde J. Finch, David A. Basiji, Luchuan Liang
  • Patent number: 7315357
    Abstract: Light from an object such as a cell moving through an imaging system is collected and dispersed so that it is imaged onto a plurality of separate detectors. The light is spectrally dispersed by a plurality of spaced-apart dichroic reflectors, each detector receiving light from a different one of the dichroic reflectors. Each dichroic filter reflects light of a different predetermined color, passing light of other colors. The output signal from each detector is indicative of a different characteristic of the object. In one configuration, each detector is provided with a separate imaging lens. In another configuration, the detectors are spaced at varying distances from the corresponding dichroic reflectors, so that separate imaging lenses are not required.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 1, 2008
    Assignee: Amnis Corporation
    Inventors: William E. Ortyn, David A. Basiji
  • Publication number: 20070146873
    Abstract: A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
    Type: Application
    Filed: December 11, 2006
    Publication date: June 28, 2007
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Keith Frost, Luchuan Liang, Richard Bauer, Brian Hall, David Perry
  • Patent number: 7221457
    Abstract: A flow imaging system is used to implement surface plasmon resonance (SPR) detection to study bio-molecular interactions. The flow imaging system is used to capture SPR absorption spectra of large numbers of objects, where each object includes both a metal film capable of exhibiting SPR, and detecting molecules. Analyte molecules are added to a solution of such objects, and the result is introduced into the flow imaging system which collects full SPR spectral data from individual objects. The objects can be nanoparticles or larger particles that support metal island films. The SPR spectral data can be used to determine specificity, kinetics, affinity, and concentration with respect to the interactions between the detecting molecules and the analyte molecules.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: May 22, 2007
    Assignee: Amnis Corporation
    Inventors: Ralph C. Jorgenson, David A. Basiji, William E. Ortyn
  • Publication number: 20060257884
    Abstract: The present invention provides methods for preparing cells with highly condensed chromosomes, such as sperm, and methods for detecting and quantifying specific cellular target molecules in intact cells. Specifically, methods are provided for detecting chromosomes and chromosomal abnormalities, including aneuploidy, in intact cells using fluorescence in situ hybridization of cells in suspension, such as sperm cells.
    Type: Application
    Filed: May 20, 2005
    Publication date: November 16, 2006
    Applicant: AMNIS CORPORATION
    Inventors: James Brawley, Philip Morrissey, Rosalynde Finch, David Basiji, Luchuan Liang
  • Publication number: 20060246481
    Abstract: The present invention provides methods of detecting and/or quantifying specific cellular target molecules in intact cells. The present invention further provides methods of processing an intact cell to facilitate in situ hybridization for use in flow cytometry.
    Type: Application
    Filed: February 27, 2006
    Publication date: November 2, 2006
    Applicant: Amnis Corporation
    Inventors: Rosalynde Finch, David Basiji, William Ortyn
  • Publication number: 20060204071
    Abstract: Multimodal/multispectral images of a population of cells are simultaneously collected. Photometric and/or morphometric features identifiable in the images are used to separate the population of cells into a plurality of subpopulations. Where the population of cells includes diseased cells and healthy cells, the images can be separated into a healthy subpopulation, and a diseased subpopulation. Where the population of cells does not include diseased cells, one or more ratios of different cell types in patients not having a disease condition can be compared to the corresponding ratios in patients having the disease condition, enabling the disease condition to be detected. For example, blood cells can be separated into different types based on their images, and an increase in the number of lymphocytes, a phenomenon associated with chronic lymphocytic leukemia, can readily be detected.
    Type: Application
    Filed: February 1, 2006
    Publication date: September 14, 2006
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Philip Morrissey, Thaddeus George, Brian Hall, Cathleen Zimmerman, David Perry
  • Publication number: 20060192955
    Abstract: A flow imaging system is used to implement surface plasmon resonance (SPR) detection to study bio-molecular interactions. The flow imaging system is used to capture SPR absorption spectra of large numbers of objects, where each object includes both a metal film capable of exhibiting SPR, and detecting molecules. Analyte molecules are added to a solution of such objects, and the result is introduced into the flow imaging system which collects full SPR spectral data from individual objects. The objects can be nanoparticles or larger particles that support metal island films. The SPR spectral data can be used to determine specificity, kinetics, affinity, and concentration with respect to the interactions between the detecting molecules and the analyte molecules.
    Type: Application
    Filed: April 24, 2006
    Publication date: August 31, 2006
    Applicant: Amnis Corporation
    Inventors: Ralph Jorgenson, David Basiji, William Ortyn
  • Patent number: 7087877
    Abstract: A pair of optical gratings are used to modulate light from an object, and the modulated light from either grating is used to determine the velocity of the object. Each optical grating is offset from a reference focal point by the same distance, one grating being offset in a positive direction, the other in a negative direction. Signals produced in response to the modulated light can be processed to determine a direction in which a primary collection lens should be moved in order to improve a focus of the imaging system on the object. The lens is moved incrementally in the direction so determined, and the process is repeated until an optimal focus is achieved. In a preferred embodiment, the signals are weighted, so that the optical grating disposed closest to the optimal focus position contributes the most to velocity detection.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: August 8, 2006
    Assignee: Amnis Corporation
    Inventors: William E. Ortyn, Michael J. Seo, David A. Basiji, Keith L. Frost, David J. Perry
  • Publication number: 20060119731
    Abstract: A system and method for high numeric aperture imaging systems includes a splitter, a defocusing system, and a combiner. The splitter reflects a portion of collected light and transmits another portion of the collected light. The defocusing system is configured to modify optical power of either the transmitted portion or reflected portion of the collected light. The combiner is oriented with respect to a mechanical angle. The combiner recombines portions of the transmitted portion and the reflected portion such that the transmitted portion and reflected portion are subsequently transmitted being separated by an optical separation angle based upon the mechanical angle of orientation of the combiner. Various other implementations are used to maintain focus with regards to the imaging systems involved.
    Type: Application
    Filed: January 24, 2006
    Publication date: June 8, 2006
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, David Perry
  • Patent number: 7057732
    Abstract: A flow imaging system is used to implement surface plasmon resonance (SPR) detection to study bio-molecular interactions. The flow imaging system is used to capture SPR absorption spectra of large numbers of objects, where each object includes both a metal film capable of exhibiting SPR, and detecting molecules. Analyte molecules are added to a solution of such objects, and the result is introduced into the flow imaging system which collects full SPR spectral data from individual objects. The objects can be nanoparticles or larger particles that support metal island films. The SPR spectral data can be used to determine specificity, kinetics, affinity, and concentration with respect to the interactions between the detecting molecules and the analyte molecules.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: June 6, 2006
    Assignee: Amnis Corporation
    Inventors: Ralph C. Jorgenson, David A. Basiji, William E. Ortyn
  • Publication number: 20060066837
    Abstract: Light from an object such as a cell moving through an imaging system is collected and dispersed so that it is imaged onto a plurality of separate detectors. The light is spectrally dispersed by a plurality of spaced-apart dichroic reflectors, each detector receiving light from a different one or the dichroic reflectors. Each dichroic filter reflects light of a different predefined color, passing light or other colors. The output signal from each detector is indicative of a different characteristic of the object. In one configuration, each detector is provided with a separate imaging lens. In another configuration, the detectors are spaced at varying distances from the corresponding dichroic reflectors, so that separate imaging lenses are not required.
    Type: Application
    Filed: September 20, 2005
    Publication date: March 30, 2006
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji
  • Publication number: 20060068371
    Abstract: Aspects of the present invention encompass the collection of multispectral images from a population of objects, and the analysis of the collected images to measure at least characteristic of the population, using photometric and/or morphometric features identifiable in the collection of images. In an exemplary application, the objects are biological cells. In a particularly preferred, but not limiting implementation, the plurality of images for each individual object are collected simultaneously. In an empirical study the characteristic being measured involves the synapse between conjugated cells. The conjugated cells may represent a subpopulation of the overall population of objects that were imaged. In a particularly preferred, yet not limiting embodiment, the present invention enables the quantization of the redistribution of cellular molecules due to the conjugation of different biological cells. Significantly, such quantization is not feasible with standard microscopy and flow cytometry.
    Type: Application
    Filed: May 4, 2005
    Publication date: March 30, 2006
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, David Lynch
  • Patent number: 7009651
    Abstract: A system and method for high numeric aperture imaging systems includes a splitter, a defocusing system, and a combiner. The splitter reflects a portion of collected light and transmits another portion of the collected light. The defocusing system is configured to modify optical power of either the transmitted portion or reflected portion of the collected light. The combiner is oriented with respect to a mechanical angle. The combiner recombines portions of the transmitted portion and the reflected portion such that the transmitted portion and reflected portion are subsequently transmitted being separated by an optical separation angle based upon the mechanical angle of orientation of the combiner. Various other implementations are used to maintain focus with regards to the imaging systems involved.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: March 7, 2006
    Assignee: Amnis Corporation
    Inventors: William E. Ortyn, David A. Basiji, David J. Perry
  • Publication number: 20060029267
    Abstract: Combinatorially-synthesized deoxyribonucleic acid (DNA) oligonucleotides attached to encoded beads that are hybridized to amplified and labeled genomic DNA or ribonucleic acid (RNA) are analyzed using a flow imaging system. Oligonucleotides and corresponding reporters are bound to the surfaces of a plurality of small beads such that different beads bear different oligo sequences. Each bead bears a unique optical signature comprising a predefined number of unique reporters, where each reporter comprises a predefined combination of different fluorochromes. The composite spectral signature in turn identifies the unique nucleotide sequence of its attached oligo chains. This optical signature is rapidly decoded using an imaging system to discriminate the different reporters attached to each bead in a flow in regard to color and spatial position on the bead.
    Type: Application
    Filed: March 11, 2005
    Publication date: February 9, 2006
    Applicant: Amnis Corporation
    Inventors: Keith Frost, David Basiji, Richard Bauer, Rosalynde Finch, William Ortyn, David Perry
  • Patent number: 6975400
    Abstract: Light from an object such as a cell moving through an imaging system is collected and dispersed so that it is imaged onto a plurality of separate detectors. The light is spectrally dispersed by a plurality of spaced-apart dichroic reflectors, each detector receiving light from a different one of the dichroic reflectors. Each dichroic filter reflects light of a different predefined color, passing light of other colors. The output signal from each detector is indicative of a different characteristic of the object. In one configuration, each detector is provided with a separate imaging lens. In another configuration, the detectors are spaced at varying distances from the corresponding dichroic reflectors, so that separate imaging lenses are not required.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: December 13, 2005
    Assignee: Amnis Corporation
    Inventors: William E. Ortyn, David A. Basiji
  • Patent number: 6947136
    Abstract: An illumination system for increasing a light signal from an object passing through a reflection cavity. The reflection cavity is defined by spaced-apart, opposed first and second surfaces disposed on opposite sides of a central volume. Preferably the first reflecting surface forms an acute angle with the second reflecting surface. A beam of light is directed into the reflection cavity so that light is reflected back and forth between the first and second surfaces a plurality of times, illuminating a different portion of the central volume with each pass until, having ranged over the central volume, the light exits the reflection cavity. The “recycling” of the light beam in this manner substantially improves the signal to noise ratio of a detection system used in conjunction with the reflection cavity by increasing an average illumination intensity in the central volume.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: September 20, 2005
    Assignee: Amnis Corporation
    Inventors: William E. Ortyn, David A. Basiji, Keith L. Frost, N. Robert McRuer
  • Patent number: 6947128
    Abstract: Light from an object moving through an imaging system is collected, dispersed, and imaged onto a time delay integration (TDI) detector that is inclined relative to an axis of motion of the object, producing a pixilated output signal. In one embodiment, the movement of the image object over the TDI detector is asynchronous with the movement of the output signal producing an output signal that is a composite of the image of the object at varying focal point along the focal plane. In another embodiment, light from the object is periodically incident on the inclined TDI detector, producing a plurality of spaced apart images and corresponding output signals that propagate across the TDI detector. The inclined plane enables images of FISH probes or other components within an object to be produced at different focal points, so that the 3D spatial relationship between the FISH probes or components can be resolved.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: September 20, 2005
    Assignee: Amnis Corporation
    Inventors: David A. Basiji, William E. Ortyn