Patents by Inventor David A. Berry

David A. Berry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975303
    Abstract: Embodiments relate to methods for enhancing chemical conversions. One or more embodiments relate to a method for enhancing a multi-step chemical conversion reaction. The method includes providing a reactant mixture comprising one or more reacting specie(s); and providing a catalyst or sorbent comprising one or more support materials and one or more deposited catalytically active materials. The method further includes applying an electromagnetic field with a prescribed power, frequency, and pulsing strategy specific to interactions of reactant species and an electromagnetic field with at least one of the support materials, sorbent, and catalytically active materials in a particular chemical reaction.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: May 7, 2024
    Assignee: United States Department of Energy
    Inventors: Dushyant Shekhawat, David A Berry, Mark W Smith, Christina Wildfire, Victor Abdelsayed
  • Patent number: 11207662
    Abstract: One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: December 28, 2021
    Assignee: U.S. Department of Energy
    Inventors: David A. Berry, Dushyant Shekhawat, Daniel J. Haynes, Mark W. Smith
  • Publication number: 20200376476
    Abstract: A method of enhancing a chemical reaction. The method includes providing catalyst particles with a predefined geometric shape having at least one of edges and points; and applying microwave energy to the catalyst particles, enhancing catalytic activity of the catalyst particles without increasing bulk temperature of surrounding reactants.
    Type: Application
    Filed: June 1, 2020
    Publication date: December 3, 2020
    Applicant: United States Department of Energy
    Inventors: Dushyant Shekhawat, Mark W. Smith, David A. Berry, Christina Wildfire, Victor Abdelsayed, Michael Spencer
  • Patent number: 10738172
    Abstract: A display panel assembly is made by optically bonding a display panel and a substantially transparent substrate.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: August 11, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David Scott Thompson, Robert S. Davidson, David A. Berry, Huang Chin Hung, Audrey A. Sherman
  • Patent number: 10688472
    Abstract: One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 23, 2020
    Assignee: U.S. Department of Energy
    Inventors: David A. Berry, Dushyant Shekhawat, Daniel J. Haynes, Mark W. Smith
  • Publication number: 20190308161
    Abstract: A system and method for increase chemical reaction rates and/or lower reaction temperatures. The system relates to a chemical reactor including non-electrically conducting support and an electron source in communication with the support. The reactor further includes an electromagnetic source in communication with at least the electron source and the non-electrically conducting support.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 10, 2019
    Inventors: Wayne A. Surdoval, David A. Berry
  • Publication number: 20190282992
    Abstract: Embodiments relate to methods for enhancing chemical conversions. One or more embodiments relate to a method for enhancing a multi-step chemical conversion reaction. The method includes providing a reactant mixture comprising one or more reacting specie(s); and providing a catalyst or sorbent comprising one or more support materials and one or more deposited catalytically active materials. The method further includes applying an electromagnetic field with a prescribed power, frequency, and pulsing strategy specific to interactions of reactant species and an electromagnetic field with at least one of the support materials, sorbent, and catalytically active materials in a particular chemical reaction.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventors: Dushyant Shekhawat, David A Berry, Mark W Smith, Christina Wildfire, Victor Abdelsayed, Michael Spencer
  • Publication number: 20190118152
    Abstract: One or more embodiments relate to a contactor/separator vessel for reacting with fine particles. The contractor/separator vessel includes a spouted bed containing fine Geldart class C particles; and an additional spoutable media to facilitate spouting of the fine Geldart class C particles in order to improve mixing, gas-solid contact/separation.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 25, 2019
    Inventors: Ronald W Breault, David A Berry, Steven L Rowan
  • Patent number: 10184907
    Abstract: Disclosed are magnetic nanosensors or transducers that permit measurement of a physical parameter in an analyte via magnetic reasonance measurements, in particular of non-agglomerative assays. More particularly, in certain embodiments, the invention relates to designs of nanoparticle reagents and responsive polymer coated magnetic nanoparticles. Additionally provided are methods of use of nanoparticle reagents and responsive polymer coated magnetic nanoparticles for the detection of a stimulus or an analyte with NMR detectors.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: January 22, 2019
    Assignee: T2 Biosystems, Inc.
    Inventors: Thomas Jay Lowery, Jr., James Joseph Koziarz, Douglas Adam Levinson, David A. Berry, Tuan A. Elstrom, Sonia Kumar, Mark John Audeh
  • Patent number: 9935318
    Abstract: The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 3, 2018
    Assignee: The United States of America Department of Energy
    Inventors: Wayne A. Surdoval, David A. Berry, Travis Shultz
  • Patent number: 9598644
    Abstract: A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO2, or mixtures thereof and the hydrogen agent may be H2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: March 21, 2017
    Assignee: U.S. Department of Energy
    Inventors: Dushyant Shekhawat, David A. Berry, Daniel J. Haynes, Victor Abdelsayed, Mark W. Smith, James J. Spivey
  • Patent number: 9562203
    Abstract: The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 400° C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 400° C. by enabling a series of reactions which generate H2 and CH4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH4 at temperatures above 400° C., and may effectively operate within an IGFC cycle at reactor temperatures between 400-900° C. and pressures in excess of 10 atmospheres.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: February 7, 2017
    Assignee: U.S. Department of Energy
    Inventors: Nicholas S. Siefert, Dushyant Shekhawat, David A. Berry, Wayne A. Surdoval
  • Publication number: 20150307562
    Abstract: Nutritive proteins are provided herein. Also provided are various other embodiments including nucleic acids encoding the proteins, recombinant microorganisms that make the proteins, vectors for expressing the proteins, methods of making the proteins using recombinant microorganisms, compositions that comprise the proteins, and methods of using the proteins. Nutritive proteins include engineered proteins, wherein the engineered proteins comprise a sequence of at least 20 amino acids that comprise an altered amino acid sequence compared to the amino acid sequence of a reference secreted protein and a ratio of essential amino acids to total amino acids present in the engineered protein higher than the ratio of essential amino acids to total amino acids present in the reference secreted protein. In some embodiments, the engineered protein comprises at least one essential amino acid residue substitution of a non-essential amino acid residue in the reference secreted protein.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 29, 2015
    Inventors: Subhayu Basu, Katherine G. Gora, Ying-Ja Chen, David M. Young, Nathaniel W. Silver, Michael J. Hamill, David A. Berry
  • Patent number: 9150476
    Abstract: A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO2, or mixtures thereof and the hydrogen agent may be H2.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: October 6, 2015
    Assignee: U.S. Department of Energy
    Inventors: Dushyant Shekhawat, David A. Berry, Daniel J. Haynes, Victor Abdelsayed, Mark W. Smith, James J. Spivey
  • Patent number: 9126833
    Abstract: A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 ?m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300° C., the second zone operates at 300-700° C., and the third operates at 700-1000° C., and fourth zone operates at at least 700° C.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: September 8, 2015
    Assignee: U.S. Department of Energy
    Inventors: David A. Berry, Daniel J. Haynes, Dushyant Shekhawat, Mark W. Smith
  • Patent number: 9028841
    Abstract: Provided are therapeutic compositions containing Ecobiotic™ populations for prevention, treatment and reduction of symptoms associated with a dysbiosis of a mammalian subject such as a human.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: May 12, 2015
    Assignee: Seres Health, Inc.
    Inventors: Matthew R. Henn, Geoffrey von Maltzahn, Anthony Mario D'Onofrio, Kevin Daniel Litcofsky, David A. Berry, David N. Cook, Noubar B. Afeyan, John Grant Aunins
  • Patent number: 8920526
    Abstract: The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700° C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700° C. by enabling a series of reactions which generate H2 and CH4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH4 at temperatures above 700° C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900° C. and pressures in excess of 10 atmospheres.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: December 30, 2014
    Assignee: U.S. Department Of Energy
    Inventors: Nicholas S. Siefert, Dushyant Shekhawat, David A. Berry, Wayne A. Surdoval
  • Publication number: 20140363365
    Abstract: A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 ?m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300° C., the second zone operates at 300-700° C., and the third operates at 700-1000° C., and fourth zone operates at at least 700° C.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 11, 2014
    Inventors: David A. Berry, Daniel J. Haynes, Dushyant Shekhawat, Mark W. Smith
  • Patent number: 8906668
    Abstract: Provided are therapeutic compositions containing Ecobiotic™ populations for prevention, treatment and reduction of symptoms associated with a dysbiosis of a mammalian subject such as a human.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 9, 2014
    Assignee: Seres Health, Inc.
    Inventors: Matthew R. Henn, Geoffrey von Maltzahn, Anthony Mario D'Onofrio, Kevin Daniel Litcofsky, David A. Berry, David N. Cook, Noubar B. Afeyan, John Grant Aunins
  • Patent number: 8888895
    Abstract: A method for the removal of H2O and CO2 from a gaseous stream comprising H2O and CO2, such as a flue gas. The method initially utilizes an H2O removal sorbent to remove some portion of the H2O, producing a dry gaseous stream and a wet H2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO2 removal sorbent to remove some portion of the CO2, generating a dry CO2 reduced stream and a loaded CO2 removal sorbent. The loaded CO2 removal sorbent is subsequently heated to produce a heated CO2 stream. The wet H2O removal sorbent and the dry CO2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H2O removal sorbent, and the partially regenerated H2O removal sorbent and the heated CO2 stream are subsequently contacted in a second regeneration stage.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: November 18, 2014
    Assignee: U.S. Department of Energy
    Inventors: James C. Fisher, Ranjani V. Siriwardane, David A. Berry, George A. Richards