Patents by Inventor David A. Blank

David A. Blank has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9638093
    Abstract: A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: May 2, 2017
    Assignee: HCRI Technologies International, LLC
    Inventor: David A. Blank
  • Publication number: 20150247445
    Abstract: A process for enhancement of combustion control in rotary and reciprocating IC engines for improving fuel efficiency by enabling leaner combustion at higher compression ratios. Embodiments supporting this process employ a fluid of higher heat of vaporization and higher volatility but lower ignitability than the fuel to increase the compression ratio required for self ignition. These have secondary chambers in a cylinder periphery for radical ignition (“RI”) species generation in an earlier cycle for use in a later cycle. These chambers communicate with a main chamber via conduits. Measures regulate the RI species generated and provided to the main chamber. These species then alter the dominant chain-initiation reactions of the main combustion ignition mechanism by lowering the heat and the fuel ratios required for combustion. This improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
    Type: Application
    Filed: May 13, 2015
    Publication date: September 3, 2015
    Inventor: David A. Blank
  • Publication number: 20150219004
    Abstract: A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 6, 2015
    Inventor: David A. Blank
  • Patent number: 9010293
    Abstract: A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: April 21, 2015
    Inventor: David A. Blank
  • Publication number: 20130306045
    Abstract: A process for enhancement of combustion control in rotary and reciprocating IC engines for improving fuel efficiency by enabling leaner combustion at higher compression ratios. Embodiments supporting this process employ a fluid of higher heat of vaporization and higher volatility but lower ignitability than the fuel to increase the compression ratio required for self ignition. These have secondary chambers in a cylinder periphery for radical ignition (“RI”) species generation in an earlier cycle for use in a later cycle. These chambers communicate with a main chamber via conduits. Measures regulate the RI species generated and provided to the main chamber. These species then alter the dominant chain-initiation reactions of the main combustion ignition mechanism by lowering the heat and the fuel ratios required for combustion. This improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
    Type: Application
    Filed: November 12, 2010
    Publication date: November 21, 2013
    Inventor: David A. Blank
  • Publication number: 20110232589
    Abstract: A process is provided for improving combustion control and fuel efficiency in rotary and reciprocating IC engines by enabling leaner combustion at higher compression ratios using less heat for ignition. Embodiments employ secondary chambers of minimal total volume within a cylinder periphery. These chambers communicate with a main chamber via conduits and enable a radical ignition (“RI”) species generation and supply process that starts in earlier cycles to be augmented and used in later cycles. Measures regulate the RI species generated and provided to the main chamber. These species alter dominant chain-initiation reactions of the combustion ignition mechanism. Also employed when preferable are fluids of higher heat of vaporization and volatility but lower ignitability than the fuel. This process improves combustion in radical ignition engines and radical augmented spark and compression ignition engines.
    Type: Application
    Filed: June 3, 2011
    Publication date: September 29, 2011
    Inventor: David A. Blank
  • Patent number: 7832372
    Abstract: A process is provided for enhancing homogeneous combustion and improving ignition in rotary and reciprocating piston IC engines. Physical embodiments supporting this process have secondary chambers embedded in the cylinder periphery to initiate radical ignition (“RI”) species generation in an earlier cycle for use in the main chamber combustion of a later cycle. These communicate with the main chamber via small conduits. Coordinated with the progressions facilitated by these secondary chambers are novel control measures for regulating the quantities of RI species ultimately generated for and conveyed to the later cycle. The pre-determinable presence of RI species so supplied then alters or adds controlled variety to the dominant chain-initiation reactions of the main combustion ignition mechanism of the later cycle. This presence does so by lowering both the heat and the fuel ratios required for starting and sustaining combustion.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: November 16, 2010
    Assignee: HCRI Technologies International, LLC
    Inventor: David A. Blank
  • Publication number: 20090228191
    Abstract: A process is provided for enhancing homogeneous combustion and improving ignition in rotary and reciprocating piston IC engines. Physical embodiments supporting this process have secondary chambers embedded in the cylinder periphery to initiate radical ignition (“RI”) species generation in an earlier cycle for use in the main chamber combustion of a later cycle. These communicate with the main chamber via small conduits. Coordinated with the progressions facilitated by these secondary chambers are novel control measures for regulating the quantities of RI species ultimately generated for and conveyed to the later cycle. The pre-determinable presence of RI species so supplied then alters or adds controlled variety to the dominant chain-initiation reactions of the main combustion ignition mechanism of the later cycle. This presence does so by lowering both the heat and the fuel ratios required for starting and sustaining combustion.
    Type: Application
    Filed: February 23, 2009
    Publication date: September 10, 2009
    Inventor: David A. Blank