Patents by Inventor David A. Chartrand

David A. Chartrand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12207970
    Abstract: Systems are provided for the arrangement of decoupled electric and acoustic modules for a transducer array of an ultrasound probe. In one embodiment, the decoupled modules are independently coupled to a flex interconnect, apart from one another, allowing for electric communication between all modules through the flex interconnect. As one example, an ultrasound transducer array for an ultrasound probe comprises an acoustic backing, a flex interconnect coupled to the backing at a first surface of the flex interconnect, a matrix acoustic array coupled to a second surface of the flex interconnect, the second surface opposite the first surface, and an electric module coupled to the second surface of the flex interconnect at a location spaced away from where the matrix acoustic array is coupled to the flex interconnect.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: January 28, 2025
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reinhold Bruestle, David A. Chartrand, Thomas Rittenschober, Scott William Easterbrook, Manuel Schoenauer, Andreas Kremsl
  • Publication number: 20210113189
    Abstract: Systems are provided for the arrangement of decoupled electric and acoustic modules for a transducer array of an ultrasound probe. In one embodiment, the decoupled modules are independently coupled to a flex interconnect, apart from one another, allowing for electric communication between all modules through the flex interconnect. As one example, an ultrasound transducer array for an ultrasound probe comprises an acoustic backing, a flex interconnect coupled to the backing at a first surface of the flex interconnect, a matrix acoustic array coupled to a second surface of the flex interconnect, the second surface opposite the first surface, and an electric module coupled to the second surface of the flex interconnect at a location spaced away from where the matrix acoustic array is coupled to the flex interconnect.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 22, 2021
    Inventors: Reinhold Bruestle, David A. Chartrand, Thomas Rittenschober, Scott William Easterbrook, Manuel Schoenauer, Andreas Kremsl
  • Patent number: 10905398
    Abstract: Systems are provided for the arrangement of decoupled electric and acoustic modules for a transducer array of an ultrasound probe. In one embodiment, the decoupled modules are independently coupled to a flex interconnect, apart from one another, allowing for electric communication between all modules through the flex interconnect. As one example, an ultrasound transducer array for an ultrasound probe comprises an acoustic backing, a flex interconnect coupled to the backing at a first surface of the flex interconnect, a matrix acoustic array coupled to a second surface of the flex interconnect, the second surface opposite the first surface, and an electric module coupled to the second surface of the flex interconnect at a location spaced away from where the matrix acoustic array is coupled to the flex interconnect.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: February 2, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reinhold Bruestle, David A. Chartrand, Thomas Rittenschober, Scott William Easterbrook, Manuel Schoenauer, Andreas Kremsl
  • Patent number: 10710116
    Abstract: Systems and methods described herein generally relate to forming a conductive layer of an ultrasound probe. The systems and methods form an ultrasound probe that includes a piezoelectric layer, and first and second matching layers. The first matching layer is interposed between the second matching layer and the piezoelectric layer. The second matching layer formed from a material having a select acoustic impedance from a laser activated molded interconnect device (MID) or a three-dimensional printer. The second matching layer being electrically coupled to the piezoelectric layer.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: July 14, 2020
    Assignee: General Electric Company
    Inventors: David A. Chartrand, Reinhold Bruestle
  • Publication number: 20190084004
    Abstract: Systems and methods described herein generally relate to forming a conductive layer of an ultrasound probe. The systems and methods form an ultrasound probe that includes a piezoelectric layer, and first and second matching layers. The first matching layer is interposed between the second matching layer and the piezoelectric layer. The second matching layer formed from a material having a select acoustic impedance from a laser activated molded interconnect device (MID) or a three-dimensional printer. The second matching layer being electrically coupled to the piezoelectric layer.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: David A. Chartrand, Reinhold Bruestle
  • Publication number: 20170188995
    Abstract: Systems are provided for the arrangement of decoupled electric and acoustic modules for a transducer array of an ultrasound probe. In one embodiment, the decoupled modules are independently coupled to a flex interconnect, apart from one another, allowing for electric communication between all modules through the flex interconnect. As one example, an ultrasound transducer array for an ultrasound probe comprises an acoustic backing, a flex interconnect coupled to the backing at a first surface of the flex interconnect, a matrix acoustic array coupled to a second surface of the flex interconnect, the second surface opposite the first surface, and an electric module coupled to the second surface of the flex interconnect at a location spaced away from where the matrix acoustic array is coupled to the flex interconnect.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 6, 2017
    Inventors: Reinhold Bruestle, David A. Chartrand, Thomas Rittenschober, Scott William Easterbrook, Manuel Schoenauer, Andreas Kremsl
  • Patent number: 8659212
    Abstract: An ultrasound transducer includes an array of acoustic elements, an integrated circuit, and an interposer. The interposer includes conductive elements that electrically connect the array of acoustic elements to the integrated circuit. An electrically conductive adhesive is engaged with the conductive elements of the interposer to electrically connect the interposer to at least one of the integrated circuit or the array of acoustic elements. The electrically conductive adhesive is anisotropically conductive.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Trym Eggen, Charles Edward Baumgartner, David A Chartrand, Bjornar Sten-Nilsen, Rolf Johannessen, Jessica Abraham
  • Publication number: 20130214641
    Abstract: An ultrasound transducer includes an array of acoustic elements, an integrated circuit, and an interposer. The interposer includes conductive elements that electrically connect the array of acoustic elements to the integrated circuit. An electrically conductive adhesive is engaged with the conductive elements of the interposer to electrically connect the interposer to at least one of the integrated circuit or the array of acoustic elements. The electrically conductive adhesive is anisotropically conductive.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Trym Eggen, Charles Edward Baumgartner, David A. Chartrand, Bjornar Sten-Nilsen, Rolf Johannessen, Jessica Abraham