Patents by Inventor David A. Gibson

David A. Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11900124
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. First and second address generator units may generate, based on different fields of the multi-part instruction, addresses from which to retrieve first and second data for use by an execution unit for the multi-part instruction or a subsequent multi-part instruction. The execution units may perform operations using a single pipeline or multiple pipelines based on third and fourth fields of the multi-part instruction.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: February 13, 2024
    Assignee: Coherent Logix, Incorporated
    Inventors: Michael B Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Publication number: 20230153117
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. First and second address generator units may generate, based on different fields of the multi-part instruction, addresses from which to retrieve first and second data for use by an execution unit for the multi-part instruction or a subsequent multi-part instruction. The execution units may perform operations using a single pipeline or multiple pipelines based on third and fourth fields of the multi-part instruction.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 18, 2023
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Patent number: 11544072
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. First and second address generator units may generate, based on different fields of the multi-part instruction, addresses from which to retrieve first and second data for use by an execution unit for the multi-part instruction or a subsequent multi-part instruction. The execution units may perform operations using a single pipeline or multiple pipelines based on third and fourth fields of the multi-part instruction.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: January 3, 2023
    Assignee: Coherent Logix, Inc.
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Publication number: 20210208895
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. First and second address generator units may generate, based on different fields of the multi-part instruction, addresses from which to retrieve first and second data for use by an execution unit for the multi-part instruction or a subsequent multi-part instruction. The execution units may perform operations using a single pipeline or multiple pipelines based on third and fourth fields of the multi-part instruction.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 8, 2021
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Patent number: 11016779
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. A first address generator unit may be configured to perform an arithmetic operation dependent upon a first field of the plurality of fields. A second address generator unit may be configured to generate at least one address of a plurality of addresses, wherein each address is dependent upon a respective field of the plurality of fields. A parallel assembly language may be used to control the plurality of address generator units and the plurality of pipelined datapaths.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: May 25, 2021
    Assignee: Coherent Logix, Incorporated
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Publication number: 20200302090
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson
  • Patent number: 10685143
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 16, 2020
    Assignee: COHERENT LOGIX, INCORPORATED
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson
  • Publication number: 20190369990
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. A first address generator unit may be configured to perform an arithmetic operation dependent upon a first field of the plurality of fields. A second address generator unit may be configured to generate at least one address of a plurality of addresses, wherein each address is dependent upon a respective field of the plurality of fields. A parallel assembly language may be used to control the plurality of address generator units and the plurality of pipelined datapaths.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Publication number: 20180276416
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Application
    Filed: June 4, 2018
    Publication date: September 27, 2018
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson
  • Patent number: 10007806
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: June 26, 2018
    Assignee: Coherent Logix, Incorporated
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson
  • Patent number: 9535877
    Abstract: A processing system includes processors and dynamically configurable communication elements (DCCs) coupled together in an interspersed arrangement. A source device may transfer a data item through an intermediate subset of the DCCs to a destination device. The source and destination devices may each correspond to different processors, DCCs, or input/output devices, or mixed combinations of these. In response to detecting a stall after the source device begins transfer of the data item to the destination device and prior to receipt of all of the data item at the destination device, a stalling device is operable to propagate stalling information through one or more of the intermediate subset towards the source device. In response to receiving the stalling information, at least one of the intermediate subset is operable to buffer all or part of the data item.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: January 3, 2017
    Assignee: COHERENT LOGIX, INCORPORATED
    Inventors: Michael B. Doerr, William H. Hallidy, David A. Gibson, Craig M. Chase
  • Publication number: 20160328231
    Abstract: In some embodiments, an apparatus includes processing circuitry that includes a plurality of different components configured to perform operations to generate execution results for instructions executed by the apparatus. In some embodiments the apparatus includes front-end circuitry configured to retrieve a plurality of instructions for execution and, based on identification of one or more instruction characteristics of the plurality of instructions, selectively disable one or more portions of the processing circuitry for one or more cycles during execution of the plurality of instructions. In some embodiments, this may reduce power consumption by the apparatus.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 10, 2016
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Patent number: 9430369
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. A first address generator unit may be configured to perform an arithmetic operation dependent upon a first field of the plurality of fields. A second address generator unit may be configured to generate at least one address of a plurality of addresses, wherein each address is dependent upon a respective field of the plurality of fields. A parallel assembly language may be used to control the plurality of address generator units and the plurality of pipelined datapaths.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: August 30, 2016
    Assignee: Coherent Logix, Incorporated
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Patent number: 9424441
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: August 23, 2016
    Assignee: Coherent Logix, Incorporated
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson
  • Publication number: 20160232357
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Application
    Filed: April 14, 2016
    Publication date: August 11, 2016
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson
  • Publication number: 20150134363
    Abstract: The present disclosure describes systems and methods for the interactive discharge of patients from hospitals and other healthcare facilities. An exemplary system according to the present disclosure may comprise at least one hospital server configured to store at least one patient's health information; at least one clinician device configured to communicate via a communications network with the hospital server; at least one clinician interface configured to conduct an interactive patient discharge process, wherein the clinician interface may be a web-based portal accessible via the clinician device; and at least one global server configured to provide a gateway for external communications.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Applicant: MEDICONNEX, LLC
    Inventor: David A. GIBSON
  • Publication number: 20150026451
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 22, 2015
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson
  • Publication number: 20140351551
    Abstract: Various embodiments are disclosed of a multiprocessor system with processing elements optimized for high performance and low power dissipation and an associated method of programming the processing elements. Each processing element may comprise a fetch unit and a plurality of address generator units and a plurality of pipelined datapaths. The fetch unit may be configured to receive a multi-part instruction, wherein the multi-part instruction includes a plurality of fields. A first address generator unit may be configured to perform an arithmetic operation dependent upon a first field of the plurality of fields. A second address generator unit may be configured to generate at least one address of a plurality of addresses, wherein each address is dependent upon a respective field of the plurality of fields. A parallel assembly language may be used to control the plurality of address generator units and the plurality of pipelined datapaths.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 27, 2014
    Applicant: COHERENT LOGIX, INCORPORATED
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, Kenneth R. Faulkner, Keith M. Bindloss, Sumeer Arya, John Mark Beardslee, David A. Gibson
  • Publication number: 20140351557
    Abstract: A processing system includes processors and dynamically configurable communication elements (DCCs) coupled together in an interspersed arrangement. A source device may transfer a data item through an intermediate subset of the DCCs to a destination device. The source and destination devices may each correspond to different processors, DCCs, or input/output devices, or mixed combinations of these. In response to detecting a stall after the source device begins transfer of the data item to the destination device and prior to receipt of all of the data item at the destination device, a stalling device is operable to propagate stalling information through one or more of the intermediate subset towards the source device. In response to receiving the stalling information, at least one of the intermediate subset is operable to buffer all or part of the data item.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 27, 2014
    Inventors: Michael B. Doerr, William H. Hallidy, David A. Gibson, Craig M. Chase
  • Patent number: 8880866
    Abstract: Disabling communication in a multiprocessor fabric. The multiprocessor fabric may include a plurality of processors and a plurality of communication elements and each of the plurality of communication elements may include a memory. A configuration may be received for the multiprocessor fabric, which specifies disabling of communication paths between one or more of: one or more processors and one or more communication elements; one or more processors and one or more other processors; or one or more communication elements and one or more other communication elements. Accordingly, the multiprocessor fabric may be automatically configured in hardware to disable the communication paths specified by the configuration. The multiprocessor fabric may be operated to execute a software application according to the configuration.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: November 4, 2014
    Assignee: Coherent Logix, Incorporated
    Inventors: Michael B. Doerr, Carl S. Dobbs, Michael B. Solka, Michael R. Trocino, David A. Gibson