Patents by Inventor David A. Hawkes
David A. Hawkes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240374400Abstract: Orthopedic implants, particularly interbody spacers, have a combination of correct pore size and stiffness/flexibility. When the implants have the proper pore size and stiffness, osteocytes are able to properly bridge the pores of the implant and then experience a proper compressive load to stimulate the bone cells to form bone within the pores. An implant includes a body formed of an osteoconductive material and having a stiffness of between 400 megapascals (MPa) and 1,200 MPa. Additionally, the body includes a plurality of pores having an average size of between 150 microns and 600 microns. The pores permit the growth of bone therein. The body is formed of packs of coils which may be formed using an additive manufacturing process and using traditional orthopedic implant materials such as titanium and titanium alloys while still achieving desired stiffness and pore sizes of the implants.Type: ApplicationFiled: July 23, 2024Publication date: November 14, 2024Inventors: Peter Halverson, David Hawkes
-
Publication number: 20240252324Abstract: Improved fixation or stabilization of implants is achieved via one or more deployable spikes or anchors. The deployable spikes or anchors may be present in the implant in a nested, collapsed, or retracted position while the implant is inserted into the human body, and may then be deployed (e.g., into adjacent bone) after the implant is in place, thereby fixing the implant's location against unwanted movement. Such fixation or stabilization of the implant may reduce patients' pain, may improve overall short-term and long-term stability of the implant, and may improve osteo-integration into the implant.Type: ApplicationFiled: April 1, 2024Publication date: August 1, 2024Inventors: David Hawkes, Peter Halverson, Jeffrey Ellis Harris, Jeffrey S. Hoskins
-
Patent number: 11944552Abstract: Improved fixation or stabilization of implants is achieved via one or more deployable spikes or anchors. The deployable spikes or anchors may be present in the implant in a nested, collapsed, or retracted position while the implant is inserted into the human body, and may then be deployed (e.g., into adjacent bone) after the implant is in place, thereby fixing the implant's location against unwanted movement. Such fixation or stabilization of the implant may reduce patients' pain, may improve overall short-term and long-term stability of the implant, and may improve osteo-integration into the implant.Type: GrantFiled: March 8, 2019Date of Patent: April 2, 2024Assignee: Nexus Spine, LLCInventors: David Hawkes, Peter Halverson, Jeffrey Ellis Harris, Jeffrey S. Hoskins
-
Patent number: 11583413Abstract: An expandable interbody spacer includes a first endplate surface located on a first side of the spacer and adapted to contact a vertebral endplate surface of a first vertebral body, a second endplate surface located on a second, opposed, side of the spacer and adapted to contact a vertebral endplate surface of a second, opposed, vertebral body and an expansion mechanism adapted to selectively apply a distracting force between the first endplate surface and the second endplate surface, whereby actuation of the expansion mechanism causes the spacer to transition between a compressed insertion configuration to an expanded fusion configuration. The spacer also includes one or more of a deformable surface, a porosity to promote bone on-growth or through-growth, a stiffness substantially equivalent to cortical bone, and structure distributing loads through the spacer substantially without transferring the loads through higher-stiffness structures.Type: GrantFiled: March 8, 2019Date of Patent: February 21, 2023Inventors: Daniel Manwill, Peter Halverson, David Hawkes
-
Publication number: 20210322130Abstract: A method, apparatus and computer program code for automatically planning at least a part of a surgical procedure to be carried out on a body part of a patient are described. A virtual model of the body part is provided, in which the model has data associated with it representing at least a part of a planned surgical procedure. The virtual model is then morphed to the body part using data derived from the patient's real body part thereby also adapting the part of the planned surgical procedure to reflect the anatomy of the patient's real body part.Type: ApplicationFiled: June 29, 2021Publication date: October 21, 2021Inventors: GRAEME PENNEY, DEAN BARRATT, DAVID HAWKES, MIKE SLOMCZYKOWSKI, PHILP EDWARDS
-
Publication number: 20190388242Abstract: An implant inserter is adapted to secure and facilitate insertion of a surgical implant. The implant has an inserter attachment interface having a narrow external opening at a surface thereof and a broader internal opening. The implant inserter includes a handle and an inserter shaft. The implant inserter also includes a pair of flexible tabs extending from a distal end of the inserter shaft with laterally extending protrusions adapted to extend into the broader internal opening and an expansion shaft adapted to selectively extend between the flexible tabs whereby the expansion shaft prevents flexion of the flexible tabs such that the laterally extending protrusions secure the surgical implant, and whereby when the expansion shaft does not extend between the flexible tabs, the flexible tabs can be flexed inwardly to cause the laterally extending protrusions to have a narrower profile that is able to be passed through the narrow external opening.Type: ApplicationFiled: June 25, 2019Publication date: December 26, 2019Inventors: Jeff Harris, Peter Halverson, David Hawkes
-
Publication number: 20190274841Abstract: Improved fixation or stabilization of implants is achieved via one or more deployable spikes or anchors. The deployable spikes or anchors may be present in the implant in a nested, collapsed, or retracted position while the implant is inserted into the human body, and may then be deployed (e.g., into adjacent bone) after the implant is in place, thereby fixing the implant's location against unwanted movement. Such fixation or stabilization of the implant may reduce patients' pain, may improve overall short-term and long-term stability of the implant, and may improve osteo-integration into the implant.Type: ApplicationFiled: March 8, 2019Publication date: September 12, 2019Inventors: David Hawkes, Peter Halverson, Jeffrey Ellis Harris, Jeffrey S. Hoskins
-
Publication number: 20190274838Abstract: An expandable interbody spacer includes a first endplate surface located on a first side of the spacer and adapted to contact a vertebral endplate surface of a first vertebral body, a second endplate surface located on a second, opposed, side of the spacer and adapted to contact a vertebral endplate surface of a second, opposed, vertebral body and an expansion mechanism adapted to selectively apply a distracting force between the first endplate surface and the second endplate surface, whereby actuation of the expansion mechanism causes the spacer to transition between a compressed insertion configuration to an expanded fusion configuration. The spacer also includes one or more of a deformable surface, a porosity to promote bone on-growth or through-growth, a stiffness substantially equivalent to cortical bone, and structure distributing loads through the spacer substantially without transferring the loads through higher-stiffness structures.Type: ApplicationFiled: March 8, 2019Publication date: September 12, 2019Inventors: Daniel Manwill, Peter Halverson, David Hawkes
-
Publication number: 20190105085Abstract: Instruments, tools, and methods assist in assembling components of a surgical construct, for example, a press-on rod to a pedicle screw. A includes an elongate driving rod having a distal tip adapted to engage and transfer a rotational force to a surgical screw and a driver connection at a proximate end thereof, a first elongate shaft having a distal end, a proximal end, and a generally U-shaped channel adapted to receive the elongate driving rod therein, and a retention mechanism to retain the elongate driving rod in the generally U-shaped channel. A tool includes an elongate hollow rod having a collapsible distal tip, an elongate shaft slidingly disposed within the elongate hollow rod, the elongate shaft having a distal end comprising a driving feature, and a locking mechanism to prevent the distal end of the elongate shaft from being inadvertently removed from the distal tip of the elongate hollow rod.Type: ApplicationFiled: October 10, 2017Publication date: April 11, 2019Inventors: David Hawkes, Quentin Aten
-
Publication number: 20180235684Abstract: A self-retaining screwdriver includes an elongate inner driver rod and an outer sleeve disposed about the inner driver rod and having a distal end, the distal end having a plurality of fingers. Each of the fingers includes a retention feature. The retention feature may be formed as an area of thickening of the finger, whereby an effective diameter of the outer sleeve at the retention features of the fingers is increased. When the inner driver rod is disposed within the outer sleeve with a distal portion of the inner driver rod extended as far as the retention feature, the presence of the inner driver rod prevents the fingers from being radially displaced inwardly. When the inner driver rod is at least partially withdrawn, the distal portion of the inner driver rod does not extend to a distal end of the fingers, and the fingers can be radially displaced inwardly.Type: ApplicationFiled: October 26, 2017Publication date: August 23, 2018Inventors: David Hawkes, Peter Halverson
-
Publication number: 20180158201Abstract: A method and apparatus are provided for registering pre-operative three dimensional (3-D) image data of a deformable organ comprising vessels with multiple intra-operative two-dimensional (2-D) ultrasound images of the deformable organ acquired by a laparoscopic ultrasound probe during a laparoscopic procedure. The apparatus is configured to: generate a 3-D vessel graph from the 3-D pre-operative image data; use the multiple 2-D ultrasound images to identify 3-D vessel locations in the deformable organ; determine a rigid registration between the 3-D vessel graph from the 3-D pre-operative image data and the identified 3-D vessel locations in the deformable organ; and apply said rigid registration to align the pre-operative three dimensional (3-D) image data with the two-dimensional (2-D) ultrasound images, wherein the rigid registration is locally valid in the region of the deformable organ of interest for the laparoscopic procedure.Type: ApplicationFiled: June 17, 2016Publication date: June 7, 2018Applicant: UCL Business PLCInventors: Stephen Thompson, Matt Clarkson, David Hawkes, Yi Song
-
Patent number: 9801667Abstract: Instruments, tools, and methods assist in assembling components of a surgical construct, for example, a press-on rod to a pedicle screw. A includes an elongate driving rod having a distal tip adapted to engage and transfer a rotational force to a surgical screw and a driver connection at a proximate end thereof, a first elongate shaft having a distal end, a proximal end, and a generally U-shaped channel adapted to receive the elongate driving rod therein, and a retention mechanism to retain the elongate driving rod in the generally U-shaped channel. A tool includes an elongate hollow rod having a collapsible distal tip, an elongate shaft slidingly disposed within the elongate hollow rod, the elongate shaft having a distal end comprising a driving feature, and a locking mechanism to prevent the distal end of the elongate shaft from being inadvertently removed from the distal tip of the elongate hollow rod.Type: GrantFiled: November 16, 2015Date of Patent: October 31, 2017Assignee: Nexus Spine, L.L.C.Inventors: David Hawkes, Quentin Aten
-
Publication number: 20170156880Abstract: Orthopedic implants, particularly interbody spacers, have a combination of correct pore size and stiffness/flexibility. When the implants have the proper pore size and stiffness, osteocytes are able to properly bridge the pores of the implant and then experience a proper compressive load to stimulate the bone cells to form bone within the pores. An implant includes a body formed of an osteoconductive material and having a stiffness of between 400 megapascals (MPa) and 1,200 MPa. Additionally, the body includes a plurality of pores having an average size of between 150 microns and 600 microns. The pores permit the growth of bone therein. The body is formed of packs of coils which may be formed using an additive manufacturing process and using traditional orthopedic implant materials such as titanium and titanium alloys while still achieving desired stiffness and pore sizes of the implants.Type: ApplicationFiled: December 7, 2016Publication date: June 8, 2017Inventors: Peter Halverson, David Hawkes
-
Publication number: 20170135735Abstract: Instruments, tools, and methods assist in assembling components of a surgical construct, for example, a press-on rod to a pedicle screw. A includes an elongate driving rod having a distal tip adapted to engage and transfer a rotational force to a surgical screw and a driver connection at a proximate end thereof, a first elongate shaft having a distal end, a proximal end, and a generally U-shaped channel adapted to receive the elongate driving rod therein, and a retention mechanism to retain the elongate driving rod in the generally U-shaped channel. A tool includes an elongate hollow rod having a collapsible distal tip, an elongate shaft slidingly disposed within the elongate hollow rod, the elongate shaft having a distal end comprising a driving feature, and a locking mechanism to prevent the distal end of the elongate shaft from being inadvertently removed from the distal tip of the elongate hollow rod.Type: ApplicationFiled: November 16, 2015Publication date: May 18, 2017Inventors: David Hawkes, Quentin Aten
-
Publication number: 20160074074Abstract: Variations on improved pedicle screw coupling assemblies, along with methods for use of such assemblies provide improved functional characteristics over existing devices. A coupling assembly is capable of providing rigid fixed attachment between a pedicle screw fully seated to underlying bone and a member extending between adjacent pedicle screws. The coupling assembly includes a pedicle screw having a threaded shaft and a head portion. The head portion includes a driving feature and a proximally oriented bore having a bore diameter. In one version, the coupling assembly includes a member adapted to extend between adjacent pedicle screws. The member includes a protrusion adapted for insertion into the bore of the pedicle screw, the protrusion having a protrusion diameter that is larger than the bore of the pedicle screw head portion. In another version, the coupling assembly includes a spherical bore in the screw head.Type: ApplicationFiled: September 14, 2015Publication date: March 17, 2016Inventor: David Hawkes
-
Publication number: 20160074174Abstract: An expandable interbody spacer for use in spinal fusion procedures includes a plurality of rigid segments connected by flexible connections to form a ring encompassing and defining a hollow central area of variable dimensions. The flexible connections between the plurality of rigid segments may include flexible regions formed between the rigid segments or a continuous flexible member extending along a multisegmented region. The flexible regions formed between the rigid segments may be integrally formed with the rigid segments. One or more of the flexible regions formed between the rigid segments may include a plurality of flexure divisions extending between adjacent rigid segments. One or more of the flexible regions formed between the rigid segments may include a flexure extending between adjacent rigid segments. The rigid segments may include surfaces to limit the range of motion between adjoining rigid segments.Type: ApplicationFiled: September 14, 2015Publication date: March 17, 2016Inventors: Peter Halverson, David Hawkes
-
Patent number: 8961522Abstract: A bone reduction method and apparatus includes a bone reduction tool including a shaft with a proximal end portion, a distal end portion for insertion into a fractured bone, a first rigid portion located at the distal end portion, and a first flexible portion located between the first rigid portion and the proximal end portion.Type: GrantFiled: January 25, 2007Date of Patent: February 24, 2015Assignee: Biomet C.V.Inventors: Anthony J. Metzinger, David A. Hawkes
-
Patent number: 8894687Abstract: A coupling assembly for use in surgical constructs comprises a first body and a second body. One of the first body and the second body includes a male member and an other of the first body and the second body includes a female member. The male member is sized and shaped to be received within the female member and the female member has an internal bore sized and shaped to receive the male member therein. A raised portion is formed on or attached to the male member. An area of decreased diameter is associated with the internal bore of the female member. The first and second bodies are coupleable to one another by an interference fit when the raised portion of the male member is positioned within the area of decreased diameter associated with the internal bore of the female member.Type: GrantFiled: April 25, 2012Date of Patent: November 25, 2014Assignee: Nexus Spine, L.L.C.Inventors: David Hawkes, Ken Gardner, Peter A. Halverson
-
Patent number: 8808300Abstract: An assembly includes a guide component having (i) a base defining a first passageway, and (ii) a handle attached to the base, the base including a first coupling component. The assembly further includes a first sheath defining a second passageway, the first sheath including a second coupling component configured to cooperate with the first coupling component to couple the first sheath to the base. The first passageway is aligned with the second passageway when the first sheath is coupled to the base. The assembly further includes a stop structure defining a central passage, the stop structure including an external surface having a plurality of keyways defined therein. The first sheath includes a key member configured to be selectively received in any one of the plurality of keyways. The stop structure is fixed in relation to the first sheath when the key member is positioned in any one of the plurality of keyways.Type: GrantFiled: September 27, 2007Date of Patent: August 19, 2014Assignee: Biomet C.V.Inventors: Matthew V. Leyden, Aaron J. Bisek, David A. Hawkes, Marc E. Ruhling, Jeffrey B. Waffensmith, Matthew S. Wallace
-
Patent number: 8781167Abstract: An apparatus and a computer-implemented method are provided for determining a location in a target image (T) of a site on a surface of a physical object using two or more reference images (I1, I2) of said physical object that have been obtained with a reference imaging device. Each of said two or more reference images includes said site on the surface of the physical object and was obtained with the reference imaging device having a different position and/or orientation relative to said physical object. The target image is obtained by a target imaging device and includes the site on the surface of the physical object. For each reference image, a set of feature mappings from the reference image to the target image is used to determine the epipolar geometry between the reference image and the target image, and a projection of the site from the reference image onto the target image is calculated from said epipolar geometry.Type: GrantFiled: September 1, 2010Date of Patent: July 15, 2014Assignee: UCL Business PLCInventors: Mingxing Hu, Baptiste Allain, David Hawkes, Sebastien Ourselin, Laurence Lovat, Richard Cook