Patents by Inventor David A. Henderson
David A. Henderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11927762Abstract: A display system comprising a steerable display having a monocular field of view of at least 1 degree, positioned within a scannable field of view of at least 20 degrees, the steerable display positioned for a user. In one embodiment, the steerable display is positioned for the user's fovea.Type: GrantFiled: October 4, 2021Date of Patent: March 12, 2024Assignee: Avegant Corp.Inventors: Aaron Matthew Eash, Andrew John Gross, Christopher David Westra, D. Scott Dewald, Edward Chia Ning Tang, Joseph Roger Battelle, Kevin William King, Warren Cornelius Welch, III, Eric Richard David Frasch, David A. Henderson, Qin Xu
-
Patent number: 11879567Abstract: Microvalve assemblies are disclosed that in some examples include a body including first and second ports and a body plate. The microvalve assemblies further include an actuator assembly including one or more exterior plates coupled to a stack. One of the one or more exterior plates contacts the body plate to form a seat and thereby restrict fluid flow from the first port to the second port, when the stack is not energized. Additionally, the actuator assembly is configured to, when the stack is energized, periodically generate a gap between the one of the one or more exterior plates and the body plate via near-field-acoustic-levitation (NFAL) to allow fluid flow through the first and second ports. Advantageously, the microvalves of this technology are relatively small and consume minimal power, thereby overcoming size and power limitations of existing valves, including pneumatic valve technologies.Type: GrantFiled: September 12, 2022Date of Patent: January 23, 2024Assignee: NEW SCALE TECHNOLOGIES, INC.Inventor: David A. Henderson
-
Patent number: 11848596Abstract: An actuator assembly includes one or more conductive coils each positioned in a movable supporting frame configured to be coupled to a load. A pair of permanent magnets are located on each side of each of the coils to provide opposite polarity magnetic fields to each of the coils. A drive circuit is coupled to the each of coils and configured to supply a drive current to each of the conductive coils. A controller is coupled to each of the coils through the drive circuit and is configured to independently control the drive current supplied to each of the coils to provide movement of the supporting frame to provide a force to the load, based on the opposite polarity fields and the drive current, wherein the movement of the supporting frame is in proportion to an amplitude and polarity of the drive current.Type: GrantFiled: October 28, 2020Date of Patent: December 19, 2023Assignee: New Scale Technologies, Inc.Inventors: Conrad R. Hoffman, Robert Culhane, Qin Xu, David A. Henderson
-
Publication number: 20230081249Abstract: Microvalve assemblies are disclosed that in some examples include a body including first and second ports and a body plate. The microvalve assemblies further include an actuator assembly including one or more exterior plates coupled to a stack. One of the one or more exterior plates contacts the body plate to form a seat and thereby restrict fluid flow from the first port to the second port, when the stack is not energized. Additionally, the actuator assembly is configured to, when the stack is energized, periodically generate a gap between the one of the one or more exterior plates and the body plate via near-field-acoustic-levitation (NFAL) to allow fluid flow through the first and second ports. Advantageously, the microvalves of this technology are relatively small and consume minimal power, thereby overcoming size and power limitations of existing valves, including pneumatic valve technologies.Type: ApplicationFiled: September 12, 2022Publication date: March 16, 2023Inventor: David A. HENDERSON
-
Publication number: 20220099982Abstract: A display system comprising a steerable display having a monocular field of view of at least 1 degree, positioned within a scannable field of view of at least 20 degrees, the steerable display positioned for a user. In one embodiment, the steerable display is positioned for the user's fovea.Type: ApplicationFiled: October 4, 2021Publication date: March 31, 2022Applicant: Avegant Corp.Inventors: Aaron Matthew Eash, Andrew John Gross, Christopher David Westra, D. Scott Dewald, Edward Chia Ning Tang, Joseph Roger Battelle, Kevin William King, Warren Cornelius Welch, III, Eric Richard David Frasch, David A. Henderson, Qin Xu
-
Patent number: 11169383Abstract: A display system comprising a steerable display having a monocular field of view of at least 1 degree, positioned within a scannable field of view of at least 20 degrees, the steerable display positioned for a user. In one embodiment, the steerable display is positioned for the user's fovea.Type: GrantFiled: December 6, 2019Date of Patent: November 9, 2021Assignee: Avegant Corp.Inventors: Aaron Matthew Eash, Andrew John Gross, Christopher David Westra, D. Scott Dewald, Edward Chia Ning Tang, Joseph Roger Battelle, Kevin William King, Warren Cornelius Welch, III, Eric Richard David Frasch, David A. Henderson, Qin Xu
-
Patent number: 11050364Abstract: A semi-resonant actuator assembly includes a resonating body comprising a piezoelectric plate having a first length, a first width, and a first thickness, and an inactive plate having a second length substantially equal the first length, a second width substantially equal to the first width, and second thickness. A thickness of the resonating body is provided by a sum of the first thickness of the active piezoelectric plate and the second thickness of the inactive plate.Type: GrantFiled: December 8, 2017Date of Patent: June 29, 2021Assignee: NEW SCALE TECHNOLOGIES, INC.Inventors: David A. Henderson, Qin Xu, Daniele Piazza, Eric Walkama
-
Publication number: 20210126519Abstract: An actuator assembly includes one or more conductive coils each positioned in a movable supporting frame configured to be coupled to a load. A pair of permanent magnets are located on each side of each of the coils to provide opposite polarity magnetic fields to each of the coils. A drive circuit is coupled to the each of coils and configured to supply a drive current to each of the conductive coils. A controller is coupled to each of the coils through the drive circuit and is configured to independently control the drive current supplied to each of the coils to provide movement of the supporting frame to provide a force to the load, based on the opposite polarity fields and the drive current, wherein the movement of the supporting frame is in proportion to an amplitude and polarity of the drive current.Type: ApplicationFiled: October 28, 2020Publication date: April 29, 2021Inventors: Conrad R. Hoffman, Robert Culhane, Qin Xu, David A. Henderson
-
Patent number: 10801373Abstract: A lead screw actuator device includes a base configured to support a plurality of actuators. A first bridge is supported by one of the plurality of actuators and a second bridge is supported by another one of the plurality of actuators. A nut is supported by the first bridge and the second bridge and is rotatably coupled to a screw with a sliding contact friction between the screw and the nut. The plurality of actuators generate small movements of the first bridge, the second bridge, and the nut that produce relative rotation between the nut and the screw. A method of making a lead screw actuator device is also disclosed.Type: GrantFiled: February 9, 2017Date of Patent: October 13, 2020Assignee: NEW SCALE TECHNOLOGIES, INC.Inventor: David A. Henderson
-
Patent number: 10284118Abstract: A two-axis angular pointing device includes a pivot bearing configured to support a payload. A first actuator is positioned to contact the payload at a first drive point. A second actuator is positioned to contact the payload at a second drive point. The first actuator is configured to generate a first movement of the payload in a direction substantially orthogonal to a plane defined by a center of the pivot bearing, the first drive point, and the second drive point to cause the payload to rotate around a first rotation axis. The second actuator is configured to generate a second movement of the payload at the second drive point in the direction substantially orthogonal to the plane to cause the payload to rotate around a second rotation axis. A method of making a two-axis angular pointing device is also disclosed.Type: GrantFiled: February 5, 2016Date of Patent: May 7, 2019Assignee: New Scale Technologies, Inc.Inventors: David A. Henderson, Qin Xu
-
Patent number: 10187037Abstract: A stick-slip stage device includes a carriage assembly configured to support a payload, the carriage assembly comprising at least three piezoelectric stick-slip actuators each having one or more contact points. At least two rails are positioned on opposing sides of the carriage assembly and configured to interact with one or more of the contact points to form a guideway for movement of the carriage assembly. A fixed structure connects the at least two rails and is configured to generate a friction force between the at least two rails and one or more of the contact points of the at least three piezoelectric stick-slip actuators. A method of making a stick-slip stage device is also disclosed.Type: GrantFiled: August 17, 2016Date of Patent: January 22, 2019Assignee: New Scale Technologies, Inc.Inventors: David A. Henderson, Qin Xu, Daniele Piazza
-
Publication number: 20180183356Abstract: A semi-resonant actuator assembly includes a resonating body comprising a piezoelectric plate having a first length, a first width, and a first thickness, and an inactive plate having a second length substantially equal the first length, a second width substantially equal to the first width, and second thickness. A thickness of the resonating body is provided by a sum of the first thickness of the active piezoelectric plate and the second thickness of the inactive plate.Type: ApplicationFiled: December 8, 2017Publication date: June 28, 2018Inventors: David A. Henderson, Qin Xu, Daniele Piazza, Eric Walkama
-
Publication number: 20170229981Abstract: A lead screw actuator device includes a base configured to support a plurality of actuators. A first bridge is supported by one of the plurality of actuators and a second bridge is supported by another one of the plurality of actuators. A nut is supported by the first bridge and the second bridge and is rotatably coupled to a screw with a sliding contact friction between the screw and the nut. The plurality of actuators generate small movements of the first bridge, the second bridge, and the nut that produce relative rotation between the nut and the screw. A method of making a lead screw actuator device is also disclosed.Type: ApplicationFiled: February 9, 2017Publication date: August 10, 2017Inventor: David A. Henderson
-
Publication number: 20170054388Abstract: A stick-slip stage device includes a carriage assembly configured to support a payload, the carriage assembly comprising at least three piezoelectric stick-slip actuators each having one or more contact points. At least two rails are positioned on opposing sides of the carriage assembly and configured to interact with one or more of the contact points to form a guideway for movement of the carriage assembly. A fixed structure connects the at least two rails and is configured to generate a friction force between the at least two rails and one or more of the contact points of the at least three piezoelectric stick-slip actuators. A method of making a stick-slip stage device is also disclosed.Type: ApplicationFiled: August 17, 2016Publication date: February 23, 2017Inventors: David A. Henderson, Qin Xu, Daniele Piazza
-
Publication number: 20160233793Abstract: A two-axis angular pointing device includes a pivot bearing configured to support a payload. A first actuator is positioned to contact the payload at a first drive point. A second actuator is positioned to contact the payload at a second drive point. The first actuator is configured to generate a first movement of the payload in a direction substantially orthogonal to a plane defined by a center of the pivot bearing, the first drive point, and the second drive point to cause the payload to rotate around a first rotation axis. The second actuator is configured to generate a second movement of the payload at the second drive point in the direction substantially orthogonal to the plane to cause the payload to rotate around a second rotation axis. A method of making a two-axis angular pointing device is also disclosed.Type: ApplicationFiled: February 5, 2016Publication date: August 11, 2016Inventors: David A. Henderson, Qin Xu
-
Patent number: 9377619Abstract: A compact wide-angle optical beam steering device includes a first rotor with a first mirror surface and a second rotor with a second mirror surface. The rotors are arranged to rotate about an axis in response to frictionally coupled vibration motors. Drive circuits are coupled to the vibration motors and a control device is coupled to the drive circuits. The control device is configured to execute programmed instructions comprising generating and providing one or more driving signals to the vibration motors to drive the rotors to an angular position about the axes. A light source is positioned to emit a beam directed to the first mirror surface. The beam is reflected from the first mirror and contacts the second mirror. The second mirror is positioned to reflect the beam to exit the steering device at a pointing direction determined by the angular position of the mirrors.Type: GrantFiled: February 3, 2014Date of Patent: June 28, 2016Assignee: New Scale Technologies, Inc.Inventors: David A. Henderson, Matthew R. Wrona
-
Patent number: 9362851Abstract: A rotary motor and a method of making the same include a vibrating motor body which has two orthogonal first bending modes and is substantially enclosed within a housing. A shaft is frictionally coupled to the vibrating motor body and is arranged to rotate in at least one direction about a rotation axis in response to the vibrating motor body. The shaft is frictionally coupled the vibrating motor body by a force substantially perpendicular to the rotation axis. One or more bearings support the shaft, are connected to the housing, and define the axis of rotation of the shaft.Type: GrantFiled: August 26, 2013Date of Patent: June 7, 2016Assignee: New Scale Technologies, Inc.Inventors: Qin Xu, Matthew Wrona, David A. Henderson, Daniele Piazza
-
Publication number: 20150219892Abstract: A compact wide-angle optical beam steering device includes a first rotor with a first mirror surface and a second rotor with a second mirror surface. The rotors are arranged to rotate about an axis in response to frictionally coupled vibration motors. Drive circuits are coupled to the vibration motors and a control device is coupled to the drive circuits. The control device is configured to execute programmed instructions comprising generating and providing one or more driving signals to the vibration motors to drive the rotors to an angular position about the axes. A light source is positioned to emit a beam directed to the first mirror surface. The beam is reflected from the first mirror and contacts the second mirror. The second mirror is positioned to reflect the beam to exit the steering device at a pointing direction determined by the angular position of the mirrors.Type: ApplicationFiled: February 3, 2014Publication date: August 6, 2015Applicant: New Scale Technologies, Inc.Inventors: David A. Henderson, Matthew R. Wrona
-
Patent number: 8680975Abstract: A haptic actuator system and a method of making the same include an ultrasonically vibrating motor body. A shaft is coupled to the vibrating motor body, the shaft arranged to rotate in at least one direction in response to the vibrating motor body. At least one unbalanced mass is coupled to and is moveable with the shaft to generate human-detectable vibrations in response to a motion of the shaft.Type: GrantFiled: March 31, 2010Date of Patent: March 25, 2014Assignee: New Scale TechnologiesInventors: David A. Henderson, Qin Xu
-
Publication number: 20140055004Abstract: A rotary motor and a method of making the same include a vibrating motor body which has two orthogonal first bending modes and is substantially enclosed within a housing. A shaft is frictionally coupled to the vibrating motor body and is arranged to rotate in at least one direction about a rotation axis in response to the vibrating motor body. The shaft is frictionally coupled the vibrating motor body by a force substantially perpendicular to the rotation axis. One or more bearings support the shaft, are connected to the housing, and define the axis of rotation of the shaft.Type: ApplicationFiled: August 26, 2013Publication date: February 27, 2014Applicant: New Scale Technologies, Inc.Inventors: Qin Xu, Matthew Wrona, David A. Henderson, Daniele Piazza