Patents by Inventor David A. Hogsett

David A. Hogsett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873520
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 16, 2024
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 11834484
    Abstract: A recombinant yeast cell comprising a heterologous polynucleotide encoding an anti-staling/freshness amylase; in particular an anti-staling/freshness amylase selected from the group consisting of a maltogenic amylase (EC 3.2.1.133), a beta-amylase (EC 3.2.1.2), and a glucan 1,4-alpha-maltotetrahydrolase (EC 3.2.1.60).
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: December 5, 2023
    Assignee: Novozymes A/S
    Inventors: Henrik Oestdal, Monica Tassone, Michael Glenn Catlett, David Hogsett, Michael Nielsen
  • Publication number: 20230033275
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a fatty acid or fatty acid derived product, wherein the modified microorganism produces fatty acyl-CoA intermediates via a malonyl-CoA dependent but malonyl-ACP independent mechanism.
    Type: Application
    Filed: June 29, 2022
    Publication date: February 2, 2023
    Applicant: CARGILL, INCORPORATED
    Inventors: Michael D. LYNCH, Michael Tai Man LOUIE, Shelley COPLEY, Eileen Colie SPINDLER, Brittany ROBINSON, Matthew LIPSCOMB, Tanya LIPSCOMB-WARNECKE, Hans H. LIAO, David HOGSETT, Ron EVANS
  • Publication number: 20220267816
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: September 30, 2021
    Publication date: August 25, 2022
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 11408013
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a fatty acid or fatty acid derived product, wherein the modified microorganism produces fatty acyl-CoA intermediates via a malonyl-CoA dependent but malonyl-ACP independent mechanism.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 9, 2022
    Assignee: CARGILL, INCORPORATED
    Inventors: Michael Lynch, Michael Louie, Shelley Copley, Eileen Spindler, Brittany Robinson, Matthew Lipscomb, Tanya Lipscomb-Warnecke, Hans Liao, David Hogsett, Ron Evans
  • Patent number: 11162125
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: November 2, 2021
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20210155943
    Abstract: A recombinant yeast cell comprising a heterologous polynucleotide encoding an anti-staling/freshness amylase; in particular an anti-staling/freshness amylase selected from the group consisting of a maltogenic amylase (EC 3.2.1.133), a beta-amylase (EC 3.2.1.2), and a glucan 1,4-alpha-maltotetrahydrolase (EC 3.2.1.60).
    Type: Application
    Filed: August 28, 2018
    Publication date: May 27, 2021
    Applicant: Novozymes A/S
    Inventors: Henrik Oestdal, Monica Tassone, Michael Glenn Catlett, David Hogsett, Michael Nielsen
  • Publication number: 20200270657
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: October 22, 2018
    Publication date: August 27, 2020
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20200157581
    Abstract: Described herein are recombinant fermenting organisms having a heterologous polynucleotide encoding a protease. Also described are processes for producing a fermentation product, such as ethanol, from starch or cellulosic-containing material with the recombinant fermenting organisms.
    Type: Application
    Filed: June 1, 2018
    Publication date: May 21, 2020
    Applicant: Novozymes A/S
    Inventors: David Hogsett, Monica Tassone, Paul Vincent Harris, Chee-Leong Soong, Michael Glenn Catlett
  • Patent number: 10494654
    Abstract: A microbial cell is used for producing at least one fatty acid ester, wherein the cell is genetically modified to contain (i) at least one first genetic mutation that enables the cell to produce at least one fatty acid and/or acyl coenzyme A (CoA) thereof by increased enzymatic activity in the cell relative to the wild type cell of malonyl-CoA dependent and malonyl-ACP independent fatty acyl-CoA metabolic pathway, wherein the fatty acid contains at least 5 carbon atoms; and (ii) a second genetic mutation that increases the activity of at least one wax ester synthase in the cell relative to the wild type cell and the wax ester synthase has sequence identity of at least 50% to a polypeptide of SEQ ID NO: 1-8 and combinations thereof or to a functional fragment of any of the polypeptides for catalyzing the conversion of fatty acid and/or acyl coenzyme A thereof to the fatty acid ester.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: December 3, 2019
    Assignee: CARGILL, INCORPORATED
    Inventors: Katrin Grammann, Jan Wolter, Liv Reinecke, Steffen Schaffer, Eileen E. Spindler, Wendy K. Ribble, Brittany L. Robinson, Catherine B. Poor, Tanya Warnecke Lipscomb, Hans H. Liao, David A. Hogsett, Ronald J. Evans
  • Patent number: 10138504
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 27, 2018
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 9605269
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 28, 2017
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Hans Van Dijken, Steve Licht, Arthur J. Shaw, IV, Alan Benjamin Gilbert, Aaron Argyros, Allan C. Froehlich, John E. McBride, Haowen Xu, David A. Hogsett, Vineet B. Rajgarhia
  • Patent number: 9315833
    Abstract: The present invention relates to the engineering and expression of heterologous cellulosomes in microorganisms in order to facilitate the conversion of biomass to useful products. In some embodiments, the invention relates to the expression of scaffoldin proteins which form the nucleus of a cellulosome. Cellulases or other biomass-degrading enzymes can be non-covalently linked to the scaffoldin protein by virtue of a dockerin domain-cohesin domain interaction.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 19, 2016
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: John McBride, Mark Mellon, Vineet Rajgarhia, Elena E. Brevnova, Erin Wiswall, David A. Hogsett, Danie LaGrange, Shaunita Rose, Emile Van Zyl
  • Publication number: 20130323766
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: August 5, 2011
    Publication date: December 5, 2013
    Applicant: Mascoma Corporation
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, Aaron Argyros, David A. Hogsett
  • Publication number: 20130302870
    Abstract: A new and improved biomass conversion system is disclosed using high-temperature flow-though pretreatment and a nanoporous membrane to provide more digestible biomass for subsequent conversion to biofuels.
    Type: Application
    Filed: June 20, 2011
    Publication date: November 14, 2013
    Applicant: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Lee R. Lynd, Chaogong Liu, David A. Hogsett
  • Publication number: 20130273555
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Application
    Filed: May 5, 2011
    Publication date: October 17, 2013
    Applicant: Mascoma Corporation
    Inventors: William Ryan Sillers, Hans Van Dijken, Steve Licht, Arthur J. Shaw, IV, Alan Benjamin Gilbert, Aaron Argyros, Allan C. Froehlich, John E. McBride, Haowen Xu, David A. Hogsett, Vineet B. Rajgarhia
  • Publication number: 20120142046
    Abstract: The present invention relates to the engineering and expression of heterologous cellulosomes in microorganisms in order to facilitate the conversion of biomass to useful products. In some embodiments, the invention relates to the expression of scaffoldin proteins which form the nucleus of a cellulosome. Cellulases or other biomass-degrading enzymes can be non-covalently linked to the scaffoldin protein by virtue of a dockerin domain-cohesin domain interaction.
    Type: Application
    Filed: February 18, 2010
    Publication date: June 7, 2012
    Inventors: John McBride, Mark Mellon, Vineet Rajgarhia, Elena E. Brevnova, Erin Wiswall, David A. Hogsett, Danie LaGrange, Shaunita Rose, Emile Van Zyl
  • Publication number: 20120108798
    Abstract: The present invention is directed to a process of producing substantially pure lignin from lignocellulosic biomass, which comprises: pre-treating a lignocellulosic feedstock to produce a reactive lignin-carbohydrate mixture; biologically-reacting the carbohydrates in the mixture, separating remaining solids from the liquid fermentation products, and drying the resulting solids to yield a substantially pure lignin product. Optionally, the lignin product may be washed and subjected to a second hydrolysis step. Optionally, the lignin product may be further processed by hydrotreating and/or pyrolysis in order to yield desirable products such as fuel additives.
    Type: Application
    Filed: October 16, 2009
    Publication date: May 3, 2012
    Applicant: Mascoma Corporation
    Inventors: Kevin S. Wenger, David A. Hogsett, Michael Ladisch, John Basdsley
  • Publication number: 20120094343
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Application
    Filed: November 12, 2009
    Publication date: April 19, 2012
    Applicant: Mascoma Corporation
    Inventors: David A. Hogsett, Vineet Rajgarhia, Arthur J. Shaw, IV, Nicky C. Caiazza
  • Publication number: 20110256601
    Abstract: Bacteria consume a variety of biomass-derived substrates and produce ethanol. Hydrogenase genes have been inactivated m Thermoanaerobacterium saccharolyticum to generate mutant strains with reduced hydrogenase activities. One such mutant strain with both the ldh and hydtrA genes inactivated shows a significant increase in ethanol production. Manipulation of hydrogenase activities provides a new approach for enhancing substrate utilization and ethanol production by biomass-fermenting microorganisms.
    Type: Application
    Filed: December 17, 2008
    Publication date: October 20, 2011
    Applicant: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Arthur Josephus Shaw, IV, Lee Lynd, David A. Hogsett