Patents by Inventor David A. Litton

David A. Litton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090308733
    Abstract: A process of coating an article includes the steps of (1) forming a layer of a ceramic based compound on an article; (2) providing a solution containing a metal as a particulate having a diameter of about 10 nanometers to about 1000 nanometers and present in an amount of about 25 percent to about 50 percent by volume of the solution; (3) contacting the ceramic based compound layer with the solution; (4) drying the article; and (5) optionally repeating steps (3) and (4).
    Type: Application
    Filed: August 24, 2009
    Publication date: December 17, 2009
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Michael J. Maloney, David A. Litton, Kevin W. Schlichting, Melvin Freling, John G. Smeggil, David B. Snow
  • Patent number: 7622195
    Abstract: A process of coating an article includes the steps of (1) applying a ceramic based compound to at least one surface of an article to form a layer of ceramic based compound; (2) applying at least one inert compound upon the ceramic based compound layer to form a protective layer, wherein the at least one inert compound is composed of a first inert compound having a cubic crystalline structure of formula (I) A3B2X3O12, or a second inert compound comprising a hexagonal crystalline structure of formula (II) A4B6X6O26, or a mixture of the first inert compound and the second inert compound; (3) optionally drying the coated article; (4) optionally repeating steps (2) and (3); and (5) heat treating the coated article.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: November 24, 2009
    Assignee: United Technologies Corporation
    Inventors: Kevin W. Schlichting, David A. Litton, Michael J. Maloney, Melvin Freling, John G. Smeggil, David B. Snow
  • Publication number: 20090258165
    Abstract: A process for coating a part comprises the steps of providing a chamber which is electrically connected as an anode, placing the part to be coated in the chamber, providing a cathode formed from a coating material to be deposited and platinum, and applying a current to the anode and the cathode to deposit the coating material and the platinum on the part.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 15, 2009
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, Michael J. Maloney, David A. Litton
  • Patent number: 7579087
    Abstract: A process of coating an article includes the steps of (1) forming a layer of a ceramic based compound on an article; (2) providing a solution containing a metal as a particulate having a diameter of about 10 nanometers to about 1000 nanometers and present in an amount of about 25 percent to about 50 percent by volume of the solution; (3) contacting the ceramic based compound layer with the solution; (4) drying the article; and (5) optionally repeating steps (3) and (4).
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: August 25, 2009
    Assignee: United Technologies Corporation
    Inventors: Michael J. Maloney, David A. Litton, Kevin W. Schlichting, Melvin Freling, John G. Smeggil, David B. Snow
  • Publication number: 20090035601
    Abstract: A protective coating system includes a nickel-aluminum-zirconium alloy coating having at least one phase selected from gamma phase nickel, gamma prime phase nickel-aluminum, or beta phase nickel-aluminum in combination with the gamma phase nickel or the gamma prime phase nickel-aluminum. For example, the nickel-aluminum-zirconium alloy coating includes about 0.001 wt % to 0.2 wt % zirconium.
    Type: Application
    Filed: August 5, 2007
    Publication date: February 5, 2009
    Inventors: David A. Litton, Venkatarama K. Seetharaman, Michael J. Maloney, Benjamin J. Zimmerman, Brian S. Tryon
  • Patent number: 7476450
    Abstract: A coating suitable for use as a bondcoat for a thermal barrier coating system includes about 5 to about 10 weight percent of aluminum (Al), about 10 to about 18 weight percent of cobalt (Co), about 4 to about 8 weight percent of chromium (Cr), about 0 to about 1 weight percent of hafnium (Hf), about 0 to about 1 weight percent of silicon (Si), about 0 to about 1 percent of yttrium (Y), about 1.5 to about 2.5 weight percent of molybdenum (Mo), about 2 to about 4 weight percent of rhenium (Re), about 5 to about 10 weight percent of tantalum (Ta), about 5 to about 8 weight percent of tungsten (W), about 0 to about 1 weight percent of zirconium (Zr), and a remainder of nickel (Ni).
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: January 13, 2009
    Assignee: United Technologies Corporation
    Inventors: Michael J. Maloney, David A. Litton, Venkatarama K. Seetharaman
  • Publication number: 20080292903
    Abstract: A method of repairing a component of a gas turbine engine that includes a metallic substrate, an existing coating, and a diffusion layer formed in the metallic substrate adjacent to the coating. The method includes removing at least a portion of the existing aluminide coating, removing material forming the diffusion layer, applying a new metallic layer to the metallic substrate, and applying a new aluminide coating over the new metallic layer to form a new diffusion layer in the new metallic layer. The new metallic layer is a substantially homogeneous material that is substantially similar in chemical composition to that of the metallic substrate, and the new metallic layer forms a structural layer having a thickness selected to provide a specified contour to the component.
    Type: Application
    Filed: May 25, 2007
    Publication date: November 27, 2008
    Applicant: United Technologies Corporation
    Inventors: Timothy A. Milleville, Monika D. Kinstler, David A. Litton, Daniel F. Paulonis
  • Patent number: 7455913
    Abstract: A process of coating an article includes the steps of (1) applying upon at least one surface of an article at least one graded layer of at least one ceramic based compound comprising at least one metal selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutelium, indium, scandium, yttrium, zirconium, hafnium, titanium, and mixtures thereof; (2) optionally drying the coated article; and (3) optionally repeating steps (1) and (2).
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: November 25, 2008
    Assignee: United Technologies Corporation
    Inventors: Melvin Freling, Michael J. Maloney, David A. Litton, Kevin W. Schlichting, John G. Smeggil, David B. Snow
  • Publication number: 20080261073
    Abstract: A coating suitable for use as a bondcoat for a thermal barrier coating system includes about 5 to about 10 weight percent of aluminum (Al), about 10 to about 18 weight percent of cobalt (Co), about 4 to about 8 weight percent of chromium (Cr), about 0 to about 1 weight percent of hafnium (Hf), about 0 to about 1 weight percent of silicon (Si), about 0 to about 1 percent of yttrium (Y), about 1.5 to about 2.5 weight percent of molybdenum (Mo), about 2 to about 4 weight percent of rhenium (Re), about 5 to about 10 weight percent of tantalum (Ta), about 5 to about 8 weight percent of tungsten (W), about 0 to about 1 weight percent of zirconium (Zr), and a remainder of nickel (Ni).
    Type: Application
    Filed: March 24, 2006
    Publication date: October 23, 2008
    Applicant: United Technologies Corporation
    Inventors: Michael J. Maloney, David A. Litton, Venkatarama K. Seetharaman
  • Patent number: 7422771
    Abstract: A method for applying a hybrid thermal barrier coating, comprising masking at least a portion of a first surface of a component with a first maskant; applying a first coating material to at least a portion of a second surface of said component; removing said first maskant; optionally masking at least a portion of said second surface of said component with a second maskant; applying a second coating material to at least a portion of said first surface of said component; and removing said second maskant.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: September 9, 2008
    Assignee: United Technologies Corporation
    Inventors: Edward F. Pietraszkiewicz, Kevin W. Schlichting, David A. Litton, Heather A. Terry
  • Publication number: 20080176097
    Abstract: A turbine engine component is provided which has a substrate, a yttria-stabilized zirconia coating applied over the substrate, and a molten silicate resistant outer layer. The molten silicate resistant outer layer is formed from gadolinia or gadolinia-stabilized zirconia. A method for forming the coating system of the present invention is described.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 24, 2008
    Inventors: Kevin W. Schlichting, Michael J. Maloney, David A. Litton, Melvin Freling, John G. Smeggil, David B. Snow
  • Publication number: 20080138658
    Abstract: A turbine engine component is provided which has a substrate and a thermal barrier coating applied over the substrate. The thermal barrier coating comprises at least one layer of a first material selected from the group consisting of a zirconate, a hafnate, a titanate, and mixtures thereof, which first material has been mixed with, and contains, from about 25 to 99 wt % of at least one oxide. The at least one oxide comprises at least one oxide of a material selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, indium, and yttrium. If desired, a metallic bond coat may be present between the substrate and the thermal barrier coating system. A method for forming the thermal barrier coating system of the present invention is described.
    Type: Application
    Filed: January 20, 2006
    Publication date: June 12, 2008
    Inventors: David A. Litton, Kevin W. Schlichting, Melvin Freling, John G. Smeggil, David B. Snow, Michael J. Maloney
  • Publication number: 20080113217
    Abstract: A process of coating an article includes the steps of (1) forming a layer of a ceramic based compound on an article; (2) providing a solution containing a metal as a particulate having a diameter of about 10 nanometers to about 1000 nanometers and present in an amount of about 25 percent to about 50 percent by volume of the solution; (3) contacting the ceramic based compound layer with the solution; (4) drying the article; and (5) optionally repeating steps (3) and (4).
    Type: Application
    Filed: January 10, 2006
    Publication date: May 15, 2008
    Inventors: Michael J. Maloney, David A. Litton, Kevin W. Schlichting, Melvin Freling, John G. Smeggil, David B. Snow
  • Publication number: 20080113218
    Abstract: A process of coating an article includes the steps of (1) applying a ceramic based compound to at least one surface of an article to form a layer of ceramic based compound; (2) applying at least one inert compound upon the ceramic based compound layer to form a protective layer, wherein the at least one inert compound is composed of a first inert compound having a cubic crystalline structure of formula (I) A3B2X3O12, or a second inert compound comprising a hexagonal crystalline structure of formula (II) A4B6X6O26, or a mixture of the first inert compound and the second inert compound; (3) optionally drying the coated article; (4) optionally repeating steps (2) and (3); and (5) heat treating the coated article.
    Type: Application
    Filed: January 10, 2006
    Publication date: May 15, 2008
    Inventors: Kevin W. Schlichting, David A. Litton, Michael J. Maloney, Melvin Freling, John G. Smeggil, David B. Snow
  • Publication number: 20080113163
    Abstract: A method is disclosed that selectively applies thermal barrier coatings that exhibit different degrees of thermal conductivity to different inner surface areas of engine combustor panels. Different types of TBCs are applied to predetermined inner surface areas of a combustor panel based on empirical observation or prediction. TBCs exhibiting low thermal conductivity are applied to combustor panel areas that are exposed to hotter temperatures and TBCs exhibiting higher thermal conductivity are applied to areas that are exposed to lower temperatures.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Inventors: Kevin W. Schlichting, David A. Litton, Edward F. Pietraszkiewicz, Melvin Freling, James A. Dierberger
  • Publication number: 20080057326
    Abstract: A thermal barrier coating system for use on a turbine engine component which reduces sand related distress is provided. The coating system comprises at least one first layer of a stabilized material selected from the group consisting of zirconia, hafnia, and titania and at least one second layer containing at least one of oxyapatite and garnet. Where the coating system comprises multiple first layers and multiple second layers, the layers are formed or deposited in an alternating manner.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 6, 2008
    Inventors: Kevin W. Schlichting, David A. Litton, Michael J. Maloney, Melvin Freling, John G. Smeggil, David B. Snow
  • Publication number: 20080044686
    Abstract: A turbine engine component has a substrate and a thermal barrier coating deposited onto the substrate. The thermal barrier coating comprises a ceramic material having a sodium containing compound incorporated therein. The sodium containing compound is present in a concentration so that when molten sand reacts with the coating, sodium silicate is formed as the by product.
    Type: Application
    Filed: August 18, 2006
    Publication date: February 21, 2008
    Inventors: Kevin W. Schlichting, Michael J. Maloney, David A. Litton, Melvin Freling, John G. Smeggil, David Snow
  • Publication number: 20080044662
    Abstract: A turbine engine component has a substrate, a thermal barrier coating deposited onto the substrate, and a sealing layer of ceramic material on an outer surface of the thermal barrier coating for limiting molten sand penetration.
    Type: Application
    Filed: August 18, 2006
    Publication date: February 21, 2008
    Inventors: Kevin W. Schlichting, Michael J. Maloney, David A. Litton, Melvin Freling, John G. Smeggil, David Snow
  • Patent number: 7326470
    Abstract: A spallation resistant metallic article comprising a metallic substrate, at least one ceramic thermal barrier coating comprising a zirconia base and at least one other element selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, In, Y, Mo and C, rare earth oxides, scandium, and indium, and a ceramic bond coat located on at least a portion of the substrate and between the metallic substrate and the at least one ceramic thermal barrier coating wherein the ceramic bond coat is composed of yttria stabilized zirconia (YSZ).
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: February 5, 2008
    Assignee: United Technologies Corporation
    Inventors: Nicholas E. Ulion, Mladen Trubelja, Michael J. Maloney, David A. Litton
  • Patent number: 7291408
    Abstract: A ceramic material having particular utility as a thermal insulating or thermal barrier coating on metallic substrates is provided. The ceramic material broadly comprises at least one oxide and the balance comprising a first oxide selected from the group consisting of zirconia, ceria, and hafnia. The at least one oxide has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, and mixtures thereof. The present invention also broadly relates to an article having a metal substrate and a thermal barrier coating as discussed above.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: November 6, 2007
    Assignee: United Technologies Corporation
    Inventors: David A. Litton, Nicholas E. Ulion, Mladen F. Trubelja, Michael J. Maloney, Sunil Govinda Warrier