Patents by Inventor David A. Lynch

David A. Lynch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220204969
    Abstract: This invention relates to metabolically engineered microorganisms, such as bacterial and or fungal strains, and bioprocesses utilizing such strains. These strains enable the dynamic control of metabolic pathways, which can be used to optimize production. Dynamic control over metabolism is accomplished via a combination of methodologies including but not limited to transcriptional silencing and controlled enzyme proteolysis. These microbial strains are utilized in a multi-stage bioprocess encompassing at least two stages, the first stage in which organisms are grown and metabolism can be optimized for microbial growth and at least one other stage in which growth can be slowed or stopped, and dynamic changes can be made to metabolism to improve the production of desired product, such as a chemical or fuel.
    Type: Application
    Filed: October 5, 2021
    Publication date: June 30, 2022
    Inventors: Michael David Lynch, Ashley Delanie Trahan, Daniel Rodriguez, Zhixia Ye, Charles Bridwell Cooper, Ahmet Bozdag
  • Publication number: 20220197992
    Abstract: A method and/or system for processing an application for launch to determine whether it might be legitimate or non-legitimate, and if non-legitimate taking security action.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 23, 2022
    Applicant: SentryBay Limited
    Inventors: David Lynch WATERSON, Rynier VAN DER WATT
  • Patent number: 11339413
    Abstract: The present disclosure provides compositions and methods for rapid production of chemicals in genetically engineered microorganisms in a large scale. Also provided herein is a high-throughput metabolic engineering platform enabling the rapid optimization of microbial production strains. The platform, which bridges a gap between current in vivo and in vitro bio-production approaches, relies on dynamic minimization of the active metabolic network.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: May 24, 2022
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Zhixia Ye
  • Publication number: 20220127904
    Abstract: An architectural covering with an operable vane having a fabric backing is provided. The vane may include a vane fabric and a backing material connected to the vane fabric by a layer of adhesive. The backing material may increase a machine-direction stiffness of the vane while slightly affecting a cross-direction stiffness of the vane. As such, the vane may have increased stiffness in its machine direction while simultaneously remaining flexible in its cross direction.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: David Lynch, Erick A. Phillips, Paul G. Swiszcz, Stephen T. Wisecup
  • Patent number: 11279956
    Abstract: The present disclosure provides compositions and methods for rapid production of chemicals in genetically engineered microorganisms in a large scale. Also provided herein is a high-throughput metabolic engineering platform enabling the rapid optimization of microbial production strains. The platform, which bridges a gap between current in vivo and in vitro bio-production approaches, relies on dynamic minimization of the active metabolic network.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: March 22, 2022
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Zhixia Ye
  • Patent number: 11268111
    Abstract: The present disclosure provides compositions and methods for rapid production of chemicals in genetically engineered microorganisms in a large scale. Also provided herein is a high-throughput metabolic engineering platform enabling the rapid optimization of microbial production strains. The platform, which bridges a gap between current in vivo and in vitro bio-production approaches, relies on dynamic minimization of the active metabolic network.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: March 8, 2022
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Zhixia Ye
  • Patent number: 11242711
    Abstract: An architectural covering with an operable vane having a fabric backing is provided. The vane may include a vane fabric and a backing material connected to the vane fabric by a layer of adhesive. The backing material may increase a machine-direction stiffness of the vane while slightly affecting a cross-direction stiffness of the vane. As such, the vane may have increased stiffness in its machine direction while simultaneously remaining flexible in its cross direction.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 8, 2022
    Assignee: HUNTER DOUGLAS INC.
    Inventors: David Lynch, Erick A. Phillips, Paul G. Swiszcz, Stephen T. Wisecup
  • Patent number: 11236370
    Abstract: The present disclosure provides compositions and methods for rapid production of chemicals in genetically engineered microorganisms in a large scale. Also provided herein is a high-throughput metabolic engineering platform enabling the rapid optimization of microbial production strains. The platform, which bridges a gap between current in vivo and in vitro bio-production approaches, relies on dynamic minimization of the active metabolic network.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: February 1, 2022
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Zhixia Ye
  • Patent number: 11203744
    Abstract: The present disclosure is related to genetically engineered microbial strains and related bioprocesses for the production of pyruvate and related products. Specifically, the use of dynamically controlled synthetic metabolic valves to reduce the activity of enzymes known to contribute to pyruvate synthesis, leads to increased pyruvate production in a two-stage process rather than a decrease in production.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: December 21, 2021
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Zhixia Ye
  • Patent number: 11193149
    Abstract: The present disclosure provides compositions and methods for rapid production of chemicals in genetically engineered microorganisms in a large scale. Also provided herein is a high-throughput metabolic engineering platform enabling the rapid optimization of microbial production strains. The platform, which bridges a gap between current in vivo and in vitro bio-production approaches, relies on dynamic minimization of the active metabolic network.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: December 7, 2021
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Zhixia Ye
  • Patent number: 11180739
    Abstract: Described are a genetically modified microorganism and corresponding methods and products. The genetically modified microorganism may include a first gene that encodes an acyl transferase and a second gene that encodes a peptide or protein. One or both of the first and second gene may be heterologous. The genetically modified microorganism may include a modified acyl-CoA biosynthetic pathway configured for one or more of: inducible biosynthesis of an acyl-CoA and over-accumulation of the acyl-CoA. The genetically modified microorganism may be effective upon fermentation to cause acylation of the peptide or protein by the acyl transferase using the acyl-CoA to provide a N-acylated peptide or protein product.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 23, 2021
    Assignee: Duke University
    Inventors: Michael David Lynch, Romel Menacho Melgar
  • Publication number: 20210357797
    Abstract: In a general aspect, a computer system includes a low-latency communication link between a classical computer and a quantum computing resource. In some cases, a quantum machine image operates on a classical computer system. The quantum machine image includes a virtualized execution environment for quantum programs. The quantum machine image is engaged with a quantum processing unit of a quantum computing system. A quantum program is communicated over a low-latency communication pathway from the classical computer system to the quantum computer system. The quantum program is executed at the quantum computer system.
    Type: Application
    Filed: February 25, 2021
    Publication date: November 18, 2021
    Applicant: Rigetti & Co, Inc.
    Inventors: Peter Jonathan Karalekas, Robert Stanley Smith, Eric Christopher Peterson, Nikolas Anton Tezak, Adam David Lynch, Christopher Butler Osborn, Steven Heidel
  • Publication number: 20210332335
    Abstract: Described are a genetically modified microorganism and corresponding methods and products. The genetically modified microorganism may include a first gene that encodes an acyl transferase and a second gene that encodes a peptide or protein. One or both of the first and second gene may be heterologous. The genetically modified microorganism may include a modified acyl-CoA biosynthetic pathway configured for one or more of: inducible biosynthesis of an acyl-CoA and over-accumulation of the acyl-CoA. The genetically modified microorganism may be effective upon fermentation to cause acylation of the peptide or protein by the acyl transferase using the acyl-CoA to provide a N-acylated peptide or protein product.
    Type: Application
    Filed: June 9, 2021
    Publication date: October 28, 2021
    Applicant: Duke University
    Inventors: Michael David Lynch, Romel Menacho Melgar
  • Patent number: 11142761
    Abstract: This invention relates to metabolically engineered microorganisms, such as bacterial and or fungal strains, and bioprocesses utilizing such strains. These strains enable the dynamic control of metabolic pathways, which can be used to optimize production. Dynamic control over metabolism is accomplished via a combination of methodologies including but not limited to transcriptional silencing and controlled enzyme proteolysis. These microbial strains are utilized in a multi-stage bioprocess encompassing at least two stages, the first stage in which microorganisms are grown and metabolism can be optimized for microbial growth and at least one other stage in which growth can be slowed or stopped, and dynamic changes can be made to metabolism to improve the production of desired product, such as a chemical or fuel.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: October 12, 2021
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Ashley Trahan, Daniel Rodriguez, Zhixia Ye, Charles Cooper, Ahmet Bozdag
  • Publication number: 20210279872
    Abstract: Methods, devices, and systems are provided for quantifying an extent of various pathology patterns in scanned subject images. The detection and quantification of pathology is performed automatically and unsupervised via a trained system. The methods, devices, and systems described herein generate unique dictionaries of elements based on actual image data scans to automatically identify pathology of new image data scans of subjects. The automatic detection and quantification system can detect a number of pathologies including a usual interstitial pneumonia pattern on computed tomography images, which is subject to high inter-observer variation, in the diagnosis of idiopathic pulmonary fibrosis.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: David A. Lynch, Stephen M. Humphries
  • Patent number: 11098307
    Abstract: This invention relates to metabolically engineered microorganisms, such as bacterial and or fungal strains, and bioprocesses utilizing such strains. These strains enable the dynamic control of metabolic pathways, which can be used to optimize production. Dynamic control over metabolism is accomplished via a combination of methodologies including but not limited to transcriptional silencing and controlled enzyme proteolysis. These microbial strains are utilized in a multi-stage bioprocess encompassing at least two stages, the first stage in which microorganisms are grown and metabolism can be optimized for microbial growth and at least one other stage in which growth can be slowed or stopped, and dynamic changes can be made to metabolism to improve the production of desired product, such as a chemical or fuel.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: August 24, 2021
    Assignee: DUKE UNIVERSITY
    Inventors: Michael David Lynch, Ashley Trahan, Daniel Rodriguez, Zhixia Ye, Charles Cooper, Ahmet Bozdag
  • Patent number: 11097494
    Abstract: A system and method for laser sealing an edge portion of a covering of an architecture-structure covering is disclosed. In one embodiment, after cutting a covering of an architectural-structure covering to an appropriate size, lasering the cut edge portions or surfaces of the covering to seal the cut edge portions or surfaces of the covering to prevent fraying. The beam of the laser may be positioned to contact the cut edge portions or surfaces of the covering in a plane of the fabric. Subsequently, the beam of the laser scans or moves across the surface of the cut edge portion of the covering. In use, the beam of the laser is arranged and configured to apply heat to the surface of the fabric material at discrete points or spots to vaporize any loose fibers located along the cut edge portion of the covering.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: August 24, 2021
    Assignee: HUNTER DOUGLAS INC.
    Inventors: David Lynch, Stephen T. Wisecup, Patrick Foley, Wayne Rayman
  • Publication number: 20210170120
    Abstract: An indicating device includes a mechanical dose counter adapted to count the number of doses that have been dispensed from or remain in a container and an electronic module coupled to the mechanical dose counter and adapted to record when the doses have been dispensed from the container. Methods of using and assembling the device are also provided.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 10, 2021
    Applicant: Trudell Medical International
    Inventors: Peter Scarrott, Michal Fulmyk, Dawid Halupka, Justin Kim, David Lynch
  • Patent number: 11021908
    Abstract: A covering for an architectural opening has a dual cord operating system. The covering may include a head rail, blind panels depending from the head rail, and an operating system. The operating system may include a housing connected to the head rail, a first drive assembly rotatably mounted within the housing and operable to move the blind panels between an extended configuration and a retracted configuration, and a second drive assembly rotatably mounted within the housing and operable to move the blind panels between a closed configuration and an open configuration.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: June 1, 2021
    Assignee: HUNTER DOUGLAS INC.
    Inventors: David B. McNeill, Ronald Holt, Stephen T. Wisecup, David Lynch, Christopher R. Mueller
  • Publication number: 20210148164
    Abstract: A covering for a vertically-suspended architectural-structure covering is disclosed. The covering is formed from a plurality of assembled vanes suspended from a headrail assembly. Each assembled vane may be made via a strip process. Each vane including a strip of material (e.g., translucent fabric), and at least one slat (e.g., arcuate opaque material) coupled to the strip of material. For example, in one embodiment, the vanes may include first and second slats coupled to an intermediate strip of material on either side of the intermediate strip of material along the vertically extending side portions thereof, respectively. The first and second slats preferably each include a complementary curved surface so that when the assembled vanes are coupled to the headrail assembly, the first slat of a first assembled vane is coupled to or nested with the second slat of a second, adjacent assembled vane.
    Type: Application
    Filed: January 26, 2021
    Publication date: May 20, 2021
    Applicant: Hunter Douglas, Inc.
    Inventors: MICHAEL J. SIEBENALLER, KEVIN DANN, JOSEPH E. KOVACH, KEN WITHERELL, DAVID LYNCH