Patents by Inventor David A. Molyneaux

David A. Molyneaux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5578925
    Abstract: A vertical B.sub.0 temporally constant magnetic field is defined between a pair of pole faces (12, 14) that are interconnected by a C-shaped ferrous magnetic flux path (16). A quadrature radio frequency coil array (50) is disposed in a plane orthogonal to the B.sub.0 field. The coil array includes a plurality of coils (50.sub.1, 50.sub.2, . . . ) that are disposed in a partially overlapping relationship. Each of the coils has a peripheral loop (60), preferably defined by four linear legs (60.sub.1, 60.sub.2, 60.sub.3, 60.sub.4) of equal length which define a square. A pair of crossing elements (62.sub.1, 62.sub.2) are connected with mid-points of opposite sides of the square, the opposite mid-points are 180.degree. out-of-phase with each other at the magnetic resonance frequency and 90.degree. out-of-phase with neighboring mid-points of the square. The crossing elements cross but are not connected, in a symmetric relationship. Each of the crossing elements has a radio frequency pick-up (64.sub.1, 64.sub.
    Type: Grant
    Filed: August 18, 1995
    Date of Patent: November 26, 1996
    Assignee: Picker International, Inc.
    Inventors: David A. Molyneaux, William O. Braum
  • Patent number: 5551430
    Abstract: A movable patient supporting portion (10) of a patient couch (A) includes a socket (26) for receiving a mating plug (24) on a localized coil (B). The patient couch selectively inserts the localized coil and a supported patient into a bore (14) of a cryogenic magnet system (C). The localized coil includes a resistor (86) whose magnitude identifies the coil. A coil identification interrogator (84) interrogates the coil identification resistor and derives a corresponding binary coil identification. The coil identification addresses a look-up table (90) to retrieve diagnostic test information, an identification of a coil for a human-readable display, and, preferably, an identification of an isocenter of the coil. A diagnostic test unit (92) electrically tests the coil through the plug and socket connection with the diagnostic tests prescribed by the look-up table.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: September 3, 1996
    Assignee: Picker International, Inc.
    Inventors: Douglas M. Blakeley, David A. Molyneaux
  • Patent number: 5510711
    Abstract: Magnetic resonance is excited in selected portions of a subject disposed within a temporally uniform magnetic field of a magnetic resonance imaging system. A quadrature coil assembly (30) receives radio frequency magnetic resonance signals from the subject. Commonly, the quadrature coil fails to receive signals in true quadrature over the entire examination region. Resonance signals from a first coil (32) and a second, orthogonal coil (34) are received (40, 42), digitized (44, 46), and Fourier transformed (50, 52) into complex images. Each complex image includes an array or grid of vector data values having a magnitude and a direction or phase angle. If the quadrature coil was truly quadrature over the entire region of interest, the data values of both complex images would be a unit vectors. The vector of one image would be offset by 90.degree. from the vectors of the other.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: April 23, 1996
    Assignee: Picker International, Inc.
    Inventors: David A. Molyneaux, Haiying Liu
  • Patent number: 5394087
    Abstract: A quadrature multiple coil array (30) includes a plurality of quadrature coil pairs (50.sub.1, 50.sub.2, . . . , 50.sub.n). Each coil pair includes a loop coil (50) or other coil which is sensitive to radio frequency signal components that are perpendicular to the coil and a flat Helmholtz coil (54) or other coil which is sensitive to radio frequency components parallel to the plane of the coil. The coils of each of the quadrature coil pairs are overlapped (56) by an amount which minimizes coupling between the coils. This enables resonance signals to be picked-up concurrently in quadrature by each of the quadrature pairs and be demodulated by a corresponding series of receivers (32.sub.1, 32.sub.2, . . . , 32.sub.n). The data from the overlapping regions to which each quadrature pair is sensitive are reconstructed (36) into image representations (38). The image representations are aligned either automatically (40) or by the operator and displayed on a video monitor (44).
    Type: Grant
    Filed: August 11, 1993
    Date of Patent: February 28, 1995
    Assignee: Picker International, Inc.
    Inventor: David A. Molyneaux
  • Patent number: 5336988
    Abstract: An RF device (A) under test is connected with ports or jacks (14, 16) of an S-parameter test set (B). An RF input jack (18) is connected with an RF tracking signal output (20) of a spectrum analyzer (C) to receive an RF tracking signal. An output jack (22) is connected with a receiver input (24) of the spectrum analyzer. A mode control (30) internal to the test set is controlled by a programmable control sequence generator (34) of the spectrum analyzer. The mode control controls a switch array (32), preferably PIN diodes, which interconnect the RF input jack (18), the RF output jack (22), the two jacks (14, 16) that are connected to the device under test, and a 50 Ohm termination (54) in four modes to make reflection measurements and two transmission measurements. DC bias jacks (26, 28) are connected with a DC power for injecting a DC component into the RF signals applied to the device under test.
    Type: Grant
    Filed: February 10, 1993
    Date of Patent: August 9, 1994
    Assignee: Picker International, Inc.
    Inventors: Thomas Chmielewski, David A. Molyneaux, William O. Braum
  • Patent number: 5209233
    Abstract: A cardiac electrode (40) has a plug (48) which is frictionally received in a socket (50) of an electrical lead (56). An impedance (54) is connected in series between the electrical lead and the socket to pass ECG signals substantially unattenuated and for blocking radio frequency signals induced in the lead from reaching the socket and the electrode and heating the electrode to a sufficient temperature to burn the patient. The impedance includes an LC circuit (66, 68) which freely passes low frequency signals, such as cardiac signals, but which is tuned to resonance at radio frequencies, particularly at the frequency of resonance excitation and manipulation pulses of a magnetic resonance imager (A). Alternately, the impedance may include a resistive element for blocking the induced currents. A temperature sensor (60) is mounted in intimate contact with an electrically and thermally conductive socket portion (52) to sense the temperature of the electrode, indirectly.
    Type: Grant
    Filed: February 11, 1991
    Date of Patent: May 11, 1993
    Assignee: Picker International, Inc.
    Inventors: G. Neil Holland, Douglas M. Blakeley, Theodore J. Reisker, David A. Molyneaux
  • Patent number: 5138260
    Abstract: A whole body RF antenna (22) surrounds an examination region (14). A localized coil array (40) having a plurality of coils (42a, 43b, . . . ) is mounted in the examination region. A switch array (48) selectively connects a selected one of the coils with an output (46). In a pilot or alignment scan, an imaging sequence is conducted using the whole body antenna (22) to generate an image of a portion of the surface coil array and the patient in the examination region. The coil array includes a marker (82) that is readily identifiable in the resultant image displayed on a video monitor (36). The location of slices for more detailed imaging are selected by positioning a cursor (64) on the video display. The position or coordinate system of the selected slices is aligned with the position or coordinate system of the coil array by positioning the cursor over the image of the marker and noting its position. Properties or parameters of each coil of the array are stored in a look up table (74).
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: August 11, 1992
    Assignee: Picker International, Inc.
    Inventors: David A. Molyneaux, William McLemore
  • Patent number: 4918388
    Abstract: A thin dielectric sheet (36) has a first or loop coil (30) defined on one surface thereof and a second or Helmholtz coil (32) defined on an obverse surface thereof. The dielectric sheet and associated coils may be laid flat (FIG. 3) or bent to match a selected curved surface of the subject (FIGS. 6-8). The first and second coils are arranged symmetrically about an axis or plane of symmetry (34). The first coil has an associated magnetic field along a y-axis and the second coil has an associated magnetic field along the x-axis. Circuits (40 and (42) tune the first and second magnetic resonance coils to a preselected magnetic resonance frequency. Magnetic resonance signals of the selected frequency received by one of the coils are phase shifted 90.degree. by a phase shifting circuit (50) and combined with the unphase shifted signals from the other coil by a combining circuit (52). The combined signals are amplified (54) and conveyed to electronic image processing circuitry (E) of a magnetic resonance scanner.
    Type: Grant
    Filed: August 19, 1988
    Date of Patent: April 17, 1990
    Assignee: Picker International, Inc.
    Inventors: Mehrdad Mehdizadeh, David A. Molyneaux, G. Neil Holland