Patents by Inventor David A. Prim

David A. Prim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10870825
    Abstract: A pulsatile perfusion bioreactor for culturing one or more engineered blood vessels having a lumen and a wall is provided. The bioreactor includes a chamber for holding the engineered blood vessel and cell culture media; a mechanical property monitoring system for measuring axial tensile stress and strain, circumferential tensile stress and strain, and/or shear stress imparted on the vessel wall; and a pump system for delivering cell culture media through the vessel lumen, wherein the vessel is exposed to a composite pressure waveform and a composite flow waveform as the media is delivered there through. The pump system includes a steady flow and peristaltic pumps. Further, the composite pressure and flow waveforms each include a mean component, a fundamental frequency component, and a second harmonic frequency component. The bioreactor also includes a computer interface for monitoring and adjusting the composite waveforms to maintain a predetermined stress level.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: December 22, 2020
    Assignee: University of South Carolina
    Inventors: John F. Eberth, Tarek Shazly, Boran Zhou, David A. Prim, Conrad Michael Gore
  • Publication number: 20200181556
    Abstract: A pulsatile perfusion bioreactor for culturing one or more engineered blood vessels having a lumen and a wall is provided. The bioreactor includes a chamber for holding the engineered blood vessel and cell culture media; a mechanical property monitoring system for measuring axial tensile stress and strain, circumferential tensile stress and strain, and/or shear stress imparted on the vessel wall; and a pump system for delivering cell culture media through the vessel lumen, wherein the vessel is exposed to a composite pressure waveform and a composite flow waveform as the media is delivered there through. The pump system includes a steady flow and peristaltic pumps. Further, the composite pressure and flow waveforms each include a mean component, a fundamental frequency component, and a second harmonic frequency component. The bioreactor also includes a computer interface for monitoring and adjusting the composite waveforms to maintain a predetermined stress level.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 11, 2020
    Inventors: JOHN F. EBERTH, TAREK SHAZLY, BORAN ZHOU, DAVID A. PRIM, CONRAD MICHAEL GORE
  • Patent number: 10611991
    Abstract: A pulsatile perfusion bioreactor for culturing one or more engineered blood vessels having a lumen and a wall is provided. The bioreactor includes a chamber for holding the engineered blood vessel and cell culture media; a mechanical property monitoring system for measuring axial tensile stress and strain, circumferential tensile stress and strain, and/or shear stress imparted on the vessel wall; and a pump system for delivering cell culture media through the vessel lumen, wherein the vessel is exposed to a composite pressure waveform and a composite flow waveform as the media is delivered there through. The pump system includes a steady flow and peristaltic pumps. Further, the composite pressure and flow waveforms each include a mean component, a fundamental frequency component, and a second harmonic frequency component. The bioreactor also includes a computer interface for monitoring and adjusting the composite waveforms to maintain a predetermined stress levels.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: April 7, 2020
    Assignee: University of South Carolina
    Inventors: John F. Eberth, Tarek Shazly, Boran Zhou, David A. Prim, Conrad Michael Gore
  • Publication number: 20160298073
    Abstract: A pulsatile perfusion bioreactor for culturing one or more engineered blood vessels having a lumen and a wall is provided. The bioreactor includes a chamber for holding the engineered blood vessel and cell culture media; a mechanical property monitoring system for measuring axial tensile stress and strain, circumferential tensile stress and strain, and/or shear stress imparted on the vessel wall; and a pump system for delivering cell culture media through the vessel lumen, wherein the vessel is exposed to a composite pressure waveform and a composite flow waveform as the media is delivered there through. The pump system includes a steady flow and peristaltic pumps. Further, the composite pressure and flow waveforms each include a mean component, a fundamental frequency component, and a second harmonic frequency component. The bioreactor also includes a computer interface for monitoring and adjusting the composite waveforms to maintain a predetermined stress levels.
    Type: Application
    Filed: March 16, 2016
    Publication date: October 13, 2016
    Inventors: John F. Eberth, Tarek Shazly, Boran Zhou, David A. Prim, Conrad Michael Gore