Patents by Inventor David A. Wallace
David A. Wallace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12144548Abstract: A combined intraocular pressure (IOP) measuring and eye medication dispensing device may include a first micro-electro-mechanical-system (MEMS) sensor to generate IOP measurements of a living organism's eye; a medication dispensing device to dispense medication into the living organism's eye; a second MEMS micro-dispenser to interface with the medication dispensing device and to control the dispensing of the medication into the living organism's eye; and an analog-to-digital (A-to-D) converter to receive control signals. The A-to-D converter may communicate the control signals to the first MEMS sensor or the second MEMS micro-dispenser; receive the generated IOP measurements from the first MEMS sensor; receive medication dispensing parameters from the second MEMS micro-dispenser or medication dispensing device, and communicate the generated IOP measurements or the medication dispensing parameters.Type: GrantFiled: August 11, 2022Date of Patent: November 19, 2024Inventor: David A Wallace
-
Patent number: 11890054Abstract: A mobile communication device-based corneal topography system includes an illumination system, a mobile communication device and a corneal topography optical housing. The illumination system is configured to generate an illumination pattern and to generate reflections of the illumination pattern off a cornea of a subject, wherein the illumination system is aligned along an axis of centers of the illumination pattern. The mobile communication device includes an image sensor to capture an image of the reflected illumination pattern. The corneal topography optical housing is coupled to the illumination system and the mobile communication device, wherein the corneal topography optical housing supports and aligns the illumination system with the image sensor of the mobile communication device. The corneal topography optical housing includes an imaging system coupled to the image sensor.Type: GrantFiled: August 15, 2022Date of Patent: February 6, 2024Inventors: David A Wallace, Stephen D Klyce, John R Rogers, R Stephen Mulder, Mark A Kahan, Paul E Glenn
-
Publication number: 20230165458Abstract: A method to perform automatic corneal topography or tomography difference mapping includes receiving one or more corneal topography or tomography data files and/or a corneal image for an examined patient from a corneal topography or tomography system; receiving personal identification parameters from captured user personal data communicated from the corneal topography or tomography system; and comparing received patient identification parameters to existing patient identification parameters in a database to identify if there are existing topography or tomography data files for a same patient in the database. The method may further include retrieving a prior topography or tomography data file for the patient from the database; and performing difference mapping by comparing the received topography or tomography data files to the prior topography or tomography data file retrieved from the database to generate a topography or tomography difference map.Type: ApplicationFiled: January 9, 2023Publication date: June 1, 2023Inventors: David A. Wallace, Stephen D Klyce
-
Patent number: 11576573Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: January 10, 2022Date of Patent: February 14, 2023Assignee: Intelligent Dignostics LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11547295Abstract: A method to perform automatic corneal topography or tomography difference mapping includes receiving one or more corneal topography or tomography data files and/or a corneal image for an examined patient from a corneal topography or tomography system; receiving personal identification parameters from captured user personal data communicated from the corneal topography or tomography system; and comparing received patient identification parameters to existing patient identification parameters in a database to identify if there are existing topography or tomography data files for a same patient in the database. The method may further include retrieving a prior topography or tomography data file for the patient from the database; and performing difference mapping by comparing the received topography or tomography data files to the prior topography or tomography data file retrieved from the database to generate a topography or tomography difference map.Type: GrantFiled: March 17, 2021Date of Patent: January 10, 2023Assignee: DAVCO, LLCInventors: David A. Wallace, Stephen D Klyce
-
Publication number: 20220386865Abstract: A mobile communication device-based corneal topography system includes an illumination system, a mobile communication device and a corneal topography optical housing. The illumination system is configured to generate an illumination pattern and to generate reflections of the illumination pattern off a cornea of a subject, wherein the illumination system is aligned along an axis of centers of the illumination pattern. The mobile communication device includes an image sensor to capture an image of the reflected illumination pattern. The corneal topography optical housing is coupled to the illumination system and the mobile communication device, wherein the corneal topography optical housing supports and aligns the illumination system with the image sensor of the mobile communication device. The corneal topography optical housing includes an imaging system coupled to the image sensor.Type: ApplicationFiled: August 15, 2022Publication date: December 8, 2022Inventors: David A. Wallace, Stephen D. Klyce, John R. Rogers, R Stephen Mulder, Mark A. Kahan, Paul E. Glenn
-
Publication number: 20220378290Abstract: A combined intraocular pressure (IOP) measuring and eye medication dispensing device may include a first micro-electro-mechanical-system (MEMS) sensor to generate IOP measurements of a living organism's eye; a medication dispensing device to dispense medication into the living organism's eye; a second MEMS micro-dispenser to interface with the medication dispensing device and to control the dispensing of the medication into the living organism's eye; and an analog-to-digital (A-to-D) converter to receive control signals. The A-to-D converter may communicate the control signals to the first MEMS sensor or the second MEMS micro-dispenser; receive the generated IOP measurements from the first MEMS sensor; receive medication dispensing parameters from the second MEMS micro-dispenser or medication dispensing device, and communicate the generated IOP measurements or the medication dispensing parameters.Type: ApplicationFiled: August 11, 2022Publication date: December 1, 2022Inventor: David A Wallace
-
Patent number: 11471046Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: January 10, 2022Date of Patent: October 18, 2022Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11412929Abstract: A combined intraocular pressure (IOP) measuring and eye medication dispensing device may include a first micro-electro-mechanical-system (MEMS) sensor to generate IOP measurements of a living organism's eye; a medication dispensing device to dispense medication into the living organism's eye; a second MEMS micro-dispenser to interface with the medication dispensing device and to control the dispensing of the medication into the living organism's eye; and an analog-to-digital (A-to-D) converter to receive control signals. The A-to-D converter may communicate the control signals to the first MEMS sensor or the second MEMS micro-dispenser; receive the generated IOP measurements from the first MEMS sensor; receive medication dispensing parameters from the second MEMS micro-dispenser or medication dispensing device, and communicate the generated IOP measurements or the medication dispensing parameters.Type: GrantFiled: November 15, 2018Date of Patent: August 16, 2022Inventor: David A Wallace
-
Patent number: 11412926Abstract: A mobile communication device-based corneal topography system includes an illumination system, a mobile communication device and a corneal topography optical housing. The illumination system is configured to generate an illumination pattern and to generate reflections of the illumination pattern off a cornea of a subject, wherein the illumination system is aligned along an axis of centers of the illumination pattern. The mobile communication device includes an image sensor to capture an image of the reflected illumination pattern. The corneal topography optical housing is coupled to the illumination system and the mobile communication device, wherein the corneal topography optical housing supports and aligns the illumination system with the image sensor of the mobile communication device. The corneal topography optical housing includes an imaging system coupled to the image sensor.Type: GrantFiled: February 22, 2019Date of Patent: August 16, 2022Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Stephen Klyce, John R Rogers, R Stephen Mulder, Mark A Kahan, Paul E Glenn
-
Publication number: 20220125305Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: January 10, 2022Publication date: April 28, 2022Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20220125306Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: January 10, 2022Publication date: April 28, 2022Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11224341Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: August 6, 2021Date of Patent: January 18, 2022Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11219360Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: August 4, 2021Date of Patent: January 11, 2022Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11219361Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: August 5, 2021Date of Patent: January 11, 2022Assignee: Intelligent Diagnostics LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20210386288Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: August 5, 2021Publication date: December 16, 2021Inventors: David A. Wallace, Philip Buscemi, Stephan D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20210378507Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: August 6, 2021Publication date: December 9, 2021Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20210378506Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: August 4, 2021Publication date: December 9, 2021Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11096573Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: April 23, 2020Date of Patent: August 24, 2021Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20210196117Abstract: A method to perform automatic corneal topography or tomography difference mapping includes receiving one or more corneal topography or tomography data files and/or a corneal image for an examined patient from a corneal topography or tomography system; receiving personal identification parameters from captured user personal data communicated from the corneal topography or tomography system; and comparing received patient identification parameters to existing patient identification parameters in a database to identify if there are existing topography or tomography data files for a same patient in the database. The method may further include retrieving a prior topography or tomography data file for the patient from the database; and performing difference mapping by comparing the received topography or tomography data files to the prior topography or tomography data file retrieved from the database to generate a topography or tomography difference map.Type: ApplicationFiled: March 17, 2021Publication date: July 1, 2021Inventors: David A. Wallace, Stephen D Klyce