Patents by Inventor David Ahern

David Ahern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250132758
    Abstract: A new field-effect transistor (FET) based switch for use in/with high voltage precision instruments is provided. The switch can enable leakage compensation. The switch can comprise a FET device and a compensation circuit coupled to the FET device to replicate and compensate for the FET device leakage, such that the switch appears not to leak current. The compensation circuit may comprise a sense device which acts as a scaled replica of the FET device being compensated. The sense device's leakage current can then be measured, reproduced at the scale factor, and injected back to the drain terminal of the FET device.
    Type: Application
    Filed: December 31, 2024
    Publication date: April 24, 2025
    Inventors: Jofrey G. Santillan, Declan McDonagh, David Aherne
  • Patent number: 12282059
    Abstract: The disclosed technology generally relates to integrated circuit devices with wear out monitoring capability. An integrated circuit device includes a wear-out monitor device configured to record an indication of wear-out of a core circuit separated from the wear-out monitor device, wherein the indication is associated with localized diffusion of a diffusant within the wear-out monitor device in response to a wear-out stress that causes the wear-out of the core circuit.
    Type: Grant
    Filed: May 16, 2024
    Date of Patent: April 22, 2025
    Assignee: Analog Devices International Unlimited Company
    Inventors: Edward John Coyne, Alan J. O'Donnell, Shaun Bradley, David Aherne, David Boland, Thomas G. O'Dwyer, Colm Patrick Heffernan, Kevin B. Manning, Mark Forde, David J. Clarke, Michael A. Looby
  • Publication number: 20250030237
    Abstract: Apparatuses including spark gap structures for electrical overstress (EOS) monitoring or protection, and associated methods, are disclosed. In an aspect, a vertical spark gap device includes a substrate having a horizontal main surface and a plurality of pairs of conductive layers over the horizontal main surface. Different ones of the pairs are separated by different vertical distances such that each pair serves as an arcing electrode pair and different ones of the arcing electrode pairs are configured to arc discharge at different voltages.
    Type: Application
    Filed: May 30, 2024
    Publication date: January 23, 2025
    Inventors: David J. Clarke, Alan J. O'Donnell, Shaun Stephen Bradley, Stephen Denis Heffernan, Patrick Martin McGuinness, Padraig L. Fitzgerald, Edward John Coyne, Michael P. Lynch, John Anthony Cleary, John Ross Wallrabenstein, Paul Joseph Maher, Andrew Christopher Linehan, Gavin Patrick Cosgrave, Michael James Twohig, Jan Kubik, Jochen Schmitt, David Aherne, Mary McSherry, Anne M. McMahon, Stanislav Jolondcovschi, Cillian Burke
  • Publication number: 20240405517
    Abstract: Apparatuses including spark gap structures for electrical overstress (EOS) monitoring or protection, and associated methods, are disclosed. In an aspect, a spark gap array includes a sheet resistor and an array of arcing electrode pairs formed over a substrate. The array of arcing electrode pairs includes first arcing electrodes formed on the sheet resistor and a second arcing electrode arranged as a sheet formed over the first arcing electrodes and separated from the first arcing electrodes by an arcing gap. The first arcing electrodes and second arcing electrode are electrically connected to first and second voltage nodes, respectively, and the arcing electrode pairs are configured to generate arc discharges in response to an EOS voltage signal received between the first and second voltage nodes.
    Type: Application
    Filed: May 30, 2024
    Publication date: December 5, 2024
    Inventors: David J. Clarke, Alan J. O'Donnell, Shaun Bradley, Stephen Denis Heffernan, Patrick Martin McGuinness, Padraig L. Fitzgerald, Edward John Coyne, Michael P. Lynch, John Anthony Cleary, John Ross Wallrabenstein, Paul Joseph Maher, Andrew Christopher Linehan, Gavin Patrick Cosgrave, Michael James Twohig, Jan Kubik, Jochen Schmitt, David Aherne, Mary McSherry, Anne M. McMahon, Stanislav Jolondcovschi, Cillian Burke
  • Publication number: 20240405518
    Abstract: Apparatuses including spark gap structures for electrical overstress (EOS) monitoring or protection, and associated methods, are disclosed. In an aspect, a spark gap device includes first and second conductive layers formed over a substrate, where the first and second conductive layers are electrically connected to first and second voltage nodes, respectively. The first conductive layer includes a plurality of arcing tips configured to form arcing electrode pairs with the second conductive layer to form an arc discharge in response to an EOS voltage between the first and second voltage nodes. The spark gap device further includes a series ballast resistor electrically connected between the arcing tips and the first voltage node, where the ballast resistor in formed in a metallization layer over the substrate and a resistance of the series ballast resistor is substantially higher than a resistance of the second conductive layer.
    Type: Application
    Filed: May 30, 2024
    Publication date: December 5, 2024
    Inventors: David J. Clarke, Alan J. O'Donnell, Shaun Bradley, Stephen Denis Heffernan, Patrick Martin McGuinness, Padraig L. Fitzgerald, Edward John Coyne, Michael P. Lynch, John Anthony Cleary, John Ross Wallrabenstein, Paul Joseph Maher, Andrew Christopher Linehan, Gavin Patrick Cosgrave, Michael James Twohig, Jan Kubik, Jochen Schmitt, David Aherne, Mary McSherry, Anne M. McMahon, Stanislav Jolondcovschi, Cillian Burke
  • Publication number: 20240405519
    Abstract: Apparatuses including spark gap structures for electrical overstress (EOS) monitoring or protection, and associated methods, are disclosed. In an aspect, a vertical spark gap device includes a substrate having a horizontal main surface, a first conductive layer and a second conductive layer each extending over the substrate and substantially parallel to the horizontal main surface while being separated in a vertical direction crossing the horizontal main surface. One of the first and second conductive layers is electrically connected to a first voltage node and the other of the first and second conductive layers is electrically connected to a second voltage node. The first and second conductive layers serve as one or more arcing electrode pairs and have overlapping portions configured to generate one or more arc discharges extending generally in the vertical direction in response to an EOS voltage signal received between the first and second voltage nodes.
    Type: Application
    Filed: May 30, 2024
    Publication date: December 5, 2024
    Inventors: David J. Clarke, Alan J. O'Donnell, Shaun Bradley, Stephen Denis Heffernan, Patrick Martin McGuinness, Padraig L. Fitzgerald, Edward John Coyne, Michael P. Lynch, John Anthony Cleary, John Ross Wallrabenstein, Paul Joseph Maher, Andrew Christopher Linehan, Gavin Patrick Cosgrave, Michael James Twohig, Jan Kubik, Jochen Schmitt, David Aherne, Mary McSherry, Anne M. McMahon, Stanislav Jolondcovschi, Cillian Burke
  • Publication number: 20240377453
    Abstract: The disclosed technology generally relates to integrated circuit devices with wear out monitoring capability. An integrated circuit device includes a wear-out monitor device configured to record an indication of wear-out of a core circuit separated from the wear-out monitor device, wherein the indication is associated with localized diffusion of a diffusant within the wear-out monitor device in response to a wear-out stress that causes the wear-out of the core circuit.
    Type: Application
    Filed: May 16, 2024
    Publication date: November 14, 2024
    Inventors: Edward John Coyne, Alan J. O'Donnell, Shaun Bradley, David Aherne, David Boland, Thomas G. O'Dwyer, Colm Patrick Heffernan, Kevin B. Manning, Mark Forde, David J. Clarke, Michael A. Looby
  • Patent number: 12140619
    Abstract: Aspects of this disclosure relate to detecting and recording information associated with electrical overstress (EOS) events, such as electrostatic discharge (ESD) events. For example, in one embodiment, an apparatus includes an electrical overstress protection device, a detection circuit configured to detect an occurrence of the EOS event, and a memory configured to store information indicative of the EOS event.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: November 12, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: Alan J. O′Donnell, David Aherne, Javier Alejandro Salcedo, David J. Clarke, John A. Cleary, Patrick Martin McGuinness, Albert C. O′Grady
  • Patent number: 12055569
    Abstract: The disclosed technology generally relates to electrical overstress protection devices, and more particularly to electrical overstress monitoring devices for detecting electrical overstress events in semiconductor devices. In one aspect, an electrical overstress monitor and/or protection device includes a two different conductive structures configured to electrically arc in response to an EOS event and a sensing circuit configured to detect a change in a physical property of the two conductive structures caused by the EOS event. The two conductive structures have facing surfaces that have different shapes.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: August 6, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: David J. Clarke, Stephen Denis Heffernan, Nijun Wei, Alan J. O'Donnell, Patrick Martin McGuinness, Shaun Bradley, Edward John Coyne, David Aherne, David M. Boland
  • Patent number: 11988708
    Abstract: The disclosed technology generally relates to integrated circuit devices with wear out monitoring capability. An integrated circuit device includes a wear-out monitor device configured to record an indication of wear-out of a core circuit separated from the wear-out monitor device, wherein the indication is associated with localized diffusion of a diffusant within the wear-out monitor device in response to a wear-out stress that causes the wear-out of the core circuit.
    Type: Grant
    Filed: May 16, 2023
    Date of Patent: May 21, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: Edward John Coyne, Alan J. O'Donnell, Shaun Bradley, David Aherne, David Boland, Thomas G. O'Dwyer, Colm Patrick Heffernan, Kevin B. Manning, Mark Forde, David J. Clarke, Michael A. Looby
  • Publication number: 20240159804
    Abstract: The disclosed technology generally relates to electrical overstress protection devices, and more particularly to electrical overstress monitoring devices for detecting electrical overstress events in semiconductor devices. In one aspect, an electrical overstress monitor and/or protection device includes a two different conductive structures configured to electrically are in response to an EOS event and a sensing circuit configured to detect a change in a physical property of the two conductive structures caused by the EOS event.
    Type: Application
    Filed: January 22, 2024
    Publication date: May 16, 2024
    Inventors: David J. Clarke, Stephen Denis Heffernan, Nijun Wei, Alan J. O'Donnell, Patrick Martin McGuinness, Shaun Bradley, Edward John Coyne, David Aherne, David M. Boland
  • Publication number: 20240087828
    Abstract: Microelectromechanical systems (MEMS) switches are disclosed. Parallel configurations of back-to-back MEMS switches are disclosed in some embodiments. An isolation connection of constant electrical potential may be made to a midpoint of the back-to-back switches. In some embodiments, a separate MEMS switch is provided as a shunt switch for the main MEMS switch. MEMS switch device configurations having multiple switchable signal paths each coupling a common input electrode to a respective output electrode are also disclosed. The MEMS switch device includes shunt switches each coupling a respective output electrode to a reference potential. The presence of a shunt switch coupled to an output electrode enhances the isolation of the signal path corresponding to that output electrode when the path is open.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Applicant: Analog Devices International Unlimited Company
    Inventors: Padraig Fitzgerald, Philip James Brennan, Jiawen Bai, Michael James Twohig, Bernard Patrick Stenson, Raymond C. Goggin, Mark Schirmer, Paul Lambkin, Donal P. McAuliffe, David Aherne, Cillian Burke, James Lee Lampen, Sumit Majumder
  • Publication number: 20240036114
    Abstract: A signal driver system can include one or more force amplifiers configured to provide drive signals to an output node, such as a device under test (DUT) node. The system can include a first switch circuit coupled between a first force amplifier and the output node, and the first switch circuit can include multiple parallel instances of switch circuits with respective different resistance characteristics. The system can include a second switch circuit coupled between a second force amplifier and the output node. The system can include a control circuit configured to control the switch circuit instances of the first switch circuit to mitigate glitch at the output node, for example, when switching between the first and second drive signals.
    Type: Application
    Filed: December 2, 2021
    Publication date: February 1, 2024
    Inventors: David Aherne, Barry P Kinsella
  • Publication number: 20230375600
    Abstract: The disclosed technology generally relates to electrical overstress protection devices, and more particularly to electrical overstress monitoring devices for detecting electrical overstress events in semiconductor devices. In one aspect, an electrical overstress monitor and/or protection device includes a two different conductive structures configured to electrically arc in response to an EOS event and a sensing circuit configured to detect a change in a physical property of the two conductive structures caused by the EOS event.
    Type: Application
    Filed: May 15, 2023
    Publication date: November 23, 2023
    Inventors: David J. Clarke, Stephen Denis Heffernan, Nijun Wei, Alan J. O'Donnell, Patrick Martin McGuinness, Shaun Bradley, Edward John Coyne, David Aherne, David M. Boland
  • Publication number: 20230366924
    Abstract: The disclosed technology generally relates to integrated circuit devices with wear out monitoring capability. An integrated circuit device includes a wear-out monitor device configured to record an indication of wear-out of a core circuit separated from the wear-out monitor device, wherein the indication is associated with localized diffusion of a diffusant within the wear-out monitor device in response to a wear-out stress that causes the wear-out of the core circuit.
    Type: Application
    Filed: May 16, 2023
    Publication date: November 16, 2023
    Inventors: Edward John Coyne, Alan J. O'Donnell, Shaun Bradley, David Aherne, David Boland, Thomas G. O'Dwyer, Colm Patrick Heffernan, Kevin B. Manning, Mark Forde, David J. Clarke, Michael A. Looby
  • Publication number: 20230221360
    Abstract: Aspects of this disclosure relate to detecting and recording information associated with electrical overstress (EOS) events, such as electrostatic discharge (ESD) events. For example, in one embodiment, an apparatus includes an electrical overstress protection device, a detection circuit configured to detect an occurrence of the EOS event, and a memory configured to store information indicative of the EOS event.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 13, 2023
    Inventors: Alan J. O'Donnell, David Aherne, Javier Alejandro Salcedo, David J. Clarke, John A. Cleary, Patrick Martin McGuinness, Albert C. O'Grady
  • Patent number: 11686763
    Abstract: The disclosed technology generally relates to integrated circuit devices with wear out monitoring capability. An integrated circuit device includes a wear-out monitor device configured to record an indication of wear-out of a core circuit separated from the wear-out monitor device, wherein the indication is associated with localized diffusion of a diffusant within the wear-out monitor device in response to a wear-out stress that causes the wear-out of the core circuit.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: June 27, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Edward John Coyne, Alan J. O'Donnell, Shaun Bradley, David Aherne, David Boland, Thomas G. O'Dwyer, Colm Patrick Heffernan, Kevin B. Manning, Mark Forde, David J. Clarke, Michael A. Looby
  • Patent number: 11668734
    Abstract: The disclosed technology generally relates to electrical overstress protection devices, and more particularly to electrical overstress monitoring devices for detecting electrical overstress events in semiconductor devices. In one aspect, an electrical overstress monitor and/or protection device includes a two different conductive structures configured to electrically arc in response to an EOS event and a sensing circuit configured to detect a change in a physical property of the two conductive structures caused by the EOS event. The two conductive structures have facing surfaces that have different shapes.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: June 6, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: David J. Clarke, Stephen Denis Heffernan, Nijun Wei, Alan J. O'Donnell, Patrick Martin McGuinness, Shaun Bradley, Edward John Coyne, David Aherne, David M. Boland
  • Patent number: 11644497
    Abstract: Aspects of this disclosure relate to detecting and recording information associated with electrical overstress (EOS) events, such as electrostatic discharge (ESD) events. For example, in one embodiment, an apparatus includes an electrical overstress protection device, a detection circuit configured to detect an occurrence of the EOS event, and a memory configured to store information indicative of the EOS event.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: May 9, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Alan J. O'Donnell, David Aherne, Javier Alejandro Salcedo, David J. Clarke, John A. Cleary, Patrick Martin McGuinness, Albert C. O'Grady
  • Publication number: 20230013075
    Abstract: Methods, apparatus, and processor-readable storage media for determining candidates for circuit breaker patterns in cloud applications using machine learning techniques are provided herein.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Inventors: Derek O'Keeffe, Jordan Daly, David Ahern