Patents by Inventor David Alan Ackerman

David Alan Ackerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170337440
    Abstract: Exemplary embodiments are directed to biometric analysis systems generally including one or more illumination sources, a camera, and an analysis module. The illumination sources are configured to illuminate at least a portion of a face of a subject. The camera is configured to capture one or more images of the subject during illumination of the face of the subject. The analysis module is configured to analyze the one or more images captured by the camera to determine an indication of liveliness of the subject and prevent spoofing.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 23, 2017
    Applicant: Princeton Identity, Inc.
    Inventors: John Timothy Green, David Alan Ackerman
  • Publication number: 20170323167
    Abstract: Exemplary embodiments are directed to biometric analysis systems generally including one or more illumination sources, a camera, and an analysis module. The illumination sources are configured to illuminate at least a portion of a face of a subject. The camera is configured to capture one or more images of the subject during illumination of the face of the subject. The analysis module is configured to analyze the one or more images captured by the camera to determine an indication of liveliness of the subject and prevent spoofing.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Applicant: Princeton Identity, Inc.
    Inventors: Barry E. Mapen, David Alan Ackerman
  • Publication number: 20170286790
    Abstract: Exemplary embodiments are directed to biometric enrollment systems including a camera and an image analysis module. The camera configured is to capture a probe image of a subject, the probe image including an iris of the subject. The image analysis module is configured to determine an iris characteristic of the iris in the probe image. The image analysis module is configured to analyze the probe image relative to a first enrollment image to determine if a match exists based on the iris characteristic. If the match exists, the image analysis module is configured to electronically store the matched probe image as an accepted image. The image analysis module is configured to select and establish the accepted image as a second enrollment image if the accepted image meets enrollment image criteria.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 5, 2017
    Applicant: Princeton Identity, Inc.
    Inventors: Barry E. Mapen, David Alan Ackerman, James Russell Bergen, Steven N. Perna
  • Publication number: 20170286792
    Abstract: Exemplary embodiments are directed to biometric analysis systems including one or more illumination sources configured to provide dim illumination to a scene including an object and configured to provide flash illumination to the object in the scene. The biometric analysis systems include a rolling shutter camera configured to capture one or more images. The biometric analysis systems include an adaptive trigger module configured to analyze the scene to detect the object in the scene during dim illumination of the scene, determine a position in a frame of the rolling shutter camera that coincides with the detected object in the scene, and arrange a delay between a start of image writing by the rolling shutter camera and a trigger of the one or more illumination sources such that a stripe of the flash illumination coincides with the detected object in the scene.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 5, 2017
    Applicant: Princeton Identity, Inc.
    Inventors: David Alan Ackerman, James R. Bergen, Barry E. Mapen, Steven N. Perna
  • Publication number: 20170251366
    Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if the digital and reference iris images match, authenticating a person as authorized to access a first device and transmitting a wireless communication from the first device to a second device.
    Type: Application
    Filed: September 24, 2015
    Publication date: August 31, 2017
    Applicant: Princeton Identity, Inc.
    Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzilloto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant
  • Patent number: 9514365
    Abstract: An integrated circuit has an image sensor to receive at least one image comprising a plurality of pixels from a camera comprising a lens, a buffer communicatively connected to the image sensor for storing values associated with the plurality of pixels, and a comparator communicately connected to the buffer to locate and identify the iris of a subject, in which locating and identifying the iris of the subject is based on a location of each pixel in a brightest pixel set. A method for locating and identifying an iris in an image includes capturing at least one image of an illuminated subject, determining a brightness value for each of the plurality of pixels, determining a location corresponding to each pixel in a brightest pixel set, and identifying the iris in the at least one image based on the location of each pixel in the brightest pixel set.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: December 6, 2016
    Assignee: Princeton Identity, Inc.
    Inventors: Michael Tinker, David Alan Ackerman, Raymond Kolczynski, James Bergen
  • Publication number: 20160012218
    Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if the digital and reference iris images match, transition an object from a locked to an unlocked state to allow access to the object.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant
  • Publication number: 20160012292
    Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., identity purposes by querying a database for data related to an identified person, comparing the data with a plurality of content, and, in response to a determination that the data matches at least one piece of the plurality of content, display the plurality of content specific to the person on a display device.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant
  • Publication number: 20160014121
    Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if at least a portion of the digital and reference iris images match, authenticating a person as authorized to conduct a financial transaction.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant
  • Publication number: 20150379325
    Abstract: An integrated circuit has an image sensor to receive at least one image comprising a plurality of pixels from a camera comprising a lens, a buffer communicatively connected to the image sensor for storing values associated with the plurality of pixels, and a comparator communicately connected to the buffer to locate and identify the iris of a subject, in which locating and identifying the iris of the subject is based on a location of each pixel in a brightest pixel set. A method for locating and identifying an iris in an image includes capturing at least one image of an illuminated subject, determining a brightness value for each of the plurality of pixels, determining a location corresponding to each pixel in a brightest pixel set, and identifying the iris in the at least one image based on the location of each pixel in the brightest pixel set.
    Type: Application
    Filed: September 4, 2015
    Publication date: December 31, 2015
    Inventors: Michael Tinker, David Alan Ackerman, Raymond Kolczynski, James Bergen
  • Patent number: 9131141
    Abstract: An iris recognition system and method for operating same is disclosed. The iris recognition system includes an image sensor, a buffer, a comparator, autofocus logic, and gain control logic. The image sensor is configured to obtain at least one image from a camera. The buffer communicatively connected to the image sensor stores values associated with the pixels in the image sensor. The comparator communicatively connected to the buffer obtains a coarse segmentation of an iris of a subject. The autofocus logic for adjusts the focus of a lens associated with the camera. The gain control logic adjusts the gain of the image sensor. The functions of obtaining a coarse segmentation, adjusting the focus of the lens, and adjusting the gain are based on the locations of the pixels with the highest value in the image sensor as stored in the buffer.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: September 8, 2015
    Assignee: SRI International
    Inventors: Michael Tinker, David Alan Ackerman, Raymond Kolczynski, James Bergen
  • Publication number: 20150098629
    Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary, and whether the person is located near the iris image capture device or at a distance from the iris image capture device. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity verification purposes. The iris biometric recognition module can be incorporated into, for example, a door lock assembly and other access controlled devices, mechanisms, and systems.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Steven N. Perna, John M. Margicin, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, James R. Bergen
  • Publication number: 20150098630
    Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary, and whether the person is located near the iris image capture device or at a distance from the iris image capture device. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity verification purposes. The iris biometric recognition module can be incorporated into, for example, a door lock assembly and other access controlled devices, mechanisms, and systems.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Steven N. Perna, John M. Margicin, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, James R. Bergen
  • Patent number: 8830340
    Abstract: The present invention provides a method and a system for high performance image signal processing of continuous images in real time. The system comprising a focal plane array for generating continuous source image frames in real time. The focal plane array divided logically into blocks of sub-frames. The system also comprising an analog to digital converter (ADC) layer having an array of ADC elements for converting the source image frames into a digital data. The system further comprising a digital processor layer having an array of processing elements for processing the digital data and an interconnecting layer for connecting each one of the ADC elements and the digital processing elements substantially vertically to the focal plane and substantially parallel to one another. The processing comprising reducing image motion blur, increasing image dynamic range, increasing image depth of field and obtaining features of the images.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: September 9, 2014
    Assignee: SRI International
    Inventors: Peter Jeffrey Burt, John Robertson Tower, Gooitzen Siemen Van der Wal, David Alan Ackerman
  • Publication number: 20090278922
    Abstract: An iris recognition system and method for operating same is disclosed. The iris recognition system includes an image sensor, a buffer, a comparator, autofocus logic, and gain control logic. The image sensor is configured to obtain at least one image from a camera. The buffer communicatively connected to the image sensor stores values associated with the pixels in the image sensor. The comparator communicately connected to the buffer obtains a coarse segmentation of an iris of a subject. The autofocus logic for adjusts the focus of a lens associated with the camera. The gain control logic adjusts the gain of the image sensor. The functions of obtaining a coarse segmentation, adjusting the focus of the lens, and adjusting the gain are based on the locations of the pixels with the highest value in the image sensor as stored in the buffer.
    Type: Application
    Filed: May 12, 2009
    Publication date: November 12, 2009
    Inventors: Michael Tinker, David Alan Ackerman, Raymond Kolczynski, James Bergen
  • Publication number: 20080063294
    Abstract: The present invention provides a method and a system for high performance image signal processing of continuous images in real time. The system comprising a focal plane array for generating continuous source image frames in real time. The focal plane array divided logically into blocks of sub-frames. The system also comprising an analog to digital converter (ADC) layer having an array of ADC elements for converting the source image frames into a digital data. The system further comprising a digital processor layer having an array of processing elements for processing the digital data and an interconnecting layer for connecting each one of the ADC elements and the digital processing elements substantially vertically to the focal plane and substantially parallel to one another. The processing comprising reducing image motion blur, increasing image dynamic range, increasing image depth of field and obtaining features of the images.
    Type: Application
    Filed: September 10, 2007
    Publication date: March 13, 2008
    Inventors: Peter Jeffrey Burt, John Robertson Tower, Gooitzen Siemen Van der Wal, David Alan Ackerman
  • Patent number: 6829262
    Abstract: A process evaluates an aging property of a distributed Bragg reflector (DBR) laser. The process includes illuminating a Bragg grating of the distributed Bragg reflector (DBR) laser with light while the DBR laser is both supplied a tuning current and not lasing. The process also includes performing an action to the DBR laser responsive to a wavelength of a Bragg peak in a portion of the light reflected by the Bragg grating and a value of the tuning current supplied during the illuminating.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: December 7, 2004
    Assignee: Tri Quint Technology Holding Co.
    Inventors: David Alan Ackerman, Sung-Nee George Chu, Eric J Dean, John Evan Johnson, Leonard Jan-Peter Ketelsen, Liming Zhang
  • Patent number: 6545788
    Abstract: A method and apparatus for stabilizing the wavelength of a laser are disclosed. The invention provides a way to stabilize a laser for applications in dense wavelength division multiplexing (DWDM) systems where frequency spacing is crucial. The invention accomplishes laser stabilization by generating one or more optical paths which are passed through one or more filters to obtain one or more signals which are a function of frequency. Another optical path which does not contain a filter is generated to obtain a signal which is a function of power. The frequency signal(s) and the power reference signal are then converted from optical to electrical and from analog-to-digital. A microcontroller is then used to normalize one or more selected frequency paths with respect to the optical power path, process the signals via software code, and generate a signal which provides feedback to the laser for stabilization.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: April 8, 2003
    Assignee: Agere Systems, Inc.
    Inventors: David Alan Ackerman, Scott L. Broutin, James Kevin Plourde, George John Przybylek, John William Stayt, Jr.
  • Patent number: 6535532
    Abstract: A method for controlling tuning current values provided to a multichannel laser source. For each operating laser channel, a desired slope value of laser power as a function of tuning current is stored. The slope values of laser power as a function of tuning current is then measured. The tuning current is then adjusted until a slope value substantially close to said desired slope value is measured. The operating tuning current is set for the laser source that corresponds to the measured slope value.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: March 18, 2003
    Assignees: Agere Systems Inc, TriQuint Semiconductor Inc
    Inventors: David Alan Ackerman, Scott L. Broutin, James K. Plourde, John W. Stayt, Jr.
  • Patent number: 6486999
    Abstract: The thermo-optic behavior of an optical path over a range of temperatures &Dgr;T is controlled by determining a figure-of-merit (FOM) for the optical path and including in the path a body of crystalline material that enables the conditions specified by the FOM to be satisfied. The crystalline material is highly transparent at a wavelength &lgr; of radiation propagating in the path, and it has a coefficient of thermal expansion (CTE) and a refractive index n such that the CTE and dn/dT are mutually adapted to satisfy the FOM over the range &Dgr;T. In one embodiment, the CTE and dn/dT of an etalon compensate one another so as to perform frequency discrimination that is essentially temperature insensitive over the range &Dgr;T. In a preferred embodiment of the optical etalon the crystalline material comprises LiCaAlF6.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: November 26, 2002
    Assignee: Agere Systems Inc.
    Inventors: David Alan Ackerman, Richard Bendicks Bylsma, Robert Louis Hartman, Glen Robert Kowach, Malcolm Ellis Lines, Lynn Frances Schneemeyer, Thomas Lawson Koch