Patents by Inventor David Alan Czaplewski

David Alan Czaplewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110020834
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Application
    Filed: March 11, 2010
    Publication date: January 27, 2011
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan (Rob) Ilic, David Alan Czaplewski, Robert H. Hall
  • Patent number: 7691583
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: April 6, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan Ilic, David Alan Czaplewski, Robert H. Hall
  • Patent number: 7654140
    Abstract: A micro-electrical mechanical oscillator has a resonant frequency of oscillation that is varied by application of heat. The resonant frequency is varied at a frequency different from the resonant frequency of the oscillator to amplify oscillations. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated by a laser to provide a time varying shift of the resonant frequency (or equivalently the stiffness) of the disc. Feedback from movement of the disc is used to modulate the intensity of the laser, and thus the stiffness of the disc to provide parametric amplification of sensed vibrations, using heating as a pump. Various other shapes of micro-electrical mechanical oscillators are used in other embodiment, including an array of such oscillators on a substrate, each having different resonant frequencies.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: February 2, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Maxim Zalalutdinov, Anatoli Olkhovets, Alan T. Zehnder, Bojan Ilic, David Alan Czaplewski, Lidija Sekaric, Jeevak M. Parpia, Harold G. Craighead
  • Patent number: 7148017
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: December 12, 2006
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan Ilic, David Alan Czaplewski, Robert H. Hall
  • Publication number: 20030173864
    Abstract: A micro-electrical mechanical oscillator has a resonant frequency of oscillation that is varied by application of heat. The resonant frequency is varied at a frequency different from the resonant frequency of the oscillator to amplify oscillations. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated by a laser to provide a time varying shift of the resonant frequency (or equivalently the stiffness) of the disc. Feedback from movement of the disc is used to modulate the intensity of the laser, and thus the stiffness of the disc to provide parametric amplification of sensed vibrations, using heating as a pump. Various other shapes of micro-electrical mechanical oscillators are used in other embodiment, including an array of such oscillators on a substrate, each having different resonant frequencies.
    Type: Application
    Filed: March 12, 2002
    Publication date: September 18, 2003
    Inventors: Maxim Zalalutdinov, Anatoli Olkhovets, Alan T. Zehnder, Bojan Ilic, David Alan Czaplewski, Lidija Sekaric, Jeevak M. Parpia, Harold G. Craighead