Patents by Inventor David Alan McBay

David Alan McBay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11692530
    Abstract: The present disclosure relates to techniques for extracting heat energy from geothermal briny fluid. A briny fluid can be extracted from a geothermal production well and delivered to a heat exchanger. The heat exchanger can receive the briny fluid and transfer heat energy from the briny fluid to a molten salt. The molten salt can be pumped to a molten salt storage tank that can serve as energy storage. The briny fluid can be returned to a geothermal source via the production well. The briny fluid can remain in a closed-loop system, apart from the molten salt, from extraction through return to the geothermal production well.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: July 4, 2023
    Inventor: David Alan McBay
  • Patent number: 11655699
    Abstract: A spallation drilling apparatus is also disclosed that uses jets of hot fluid for drilling. This is compatible with drilling wells in high temperature zones, such as a lava dome. A simplified pyrolysis reactor for use in a lava dome is also disclosed, in which the dome functions to contain the reaction, and the apparatus to facilitate pyrolysis is far more compact.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: May 23, 2023
    Inventor: David Alan McBay
  • Patent number: 11519639
    Abstract: The disclosed technology includes methods of extracting geothermal energy, generally comprising the steps of: insertion of a thermal mass into a Heat Absorption Zone, absorbing heat in thermal mass, raising the thermal mass to a Heat Transfer Zone, and transferring the heat from the thermal mass. The acquired heat can be used to generate electricity or to drive an industrial process. The thermal mass can have internal chambers containing a liquid such as molten salt, and can also have structures facilitating heat exchange using a thermal exchange fluid, such as a gas or a glycol-based fluid. In some embodiments, two thermal masses are used as counterweights, reducing the energy consumed in bringing the heat in the thermal masses to the surface. In other embodiments, solid or molten salt can be directly supplied to a well shaft to acquire geothermal heat and returned to the surface in a closed loop system.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: December 6, 2022
    Inventor: David Alan McBay
  • Publication number: 20220228574
    Abstract: The present disclosure relates to techniques for extracting heat energy from geothermal briny fluid. A briny fluid can be extracted from a geothermal production well and delivered to a heat exchanger. The heat exchanger can receive the briny fluid and transfer heat energy from the briny fluid to a molten salt. The molten salt can be pumped to a molten salt storage tank that can serve as energy storage. The briny fluid can be returned to a geothermal source via the production well. The briny fluid can remain in a closed-loop system, apart from the molten salt, from extraction through return to the geothermal production well.
    Type: Application
    Filed: December 10, 2021
    Publication date: July 21, 2022
    Inventor: David Alan McBay
  • Publication number: 20220154978
    Abstract: The disclosed technology includes methods of extracting geothermal energy, generally comprising the steps of: insertion of a thermal mass into a Heat Absorption Zone, absorbing heat in thermal mass, raising the thermal mass to a Heat Transfer Zone, and transferring the heat from the thermal mass. The acquired heat can be used to generate electricity or to drive an industrial process. The thermal mass can have internal chambers containing a liquid such as molten salt, and can also have structures facilitating heat exchange using a thermal exchange fluid, such as a gas or a glycol-based fluid. In some embodiments, two thermal masses are used as counterweights, reducing the energy consumed in bringing the heat in the thermal masses to the surface. In other embodiments, solid or molten salt can be directly supplied to a well shaft to acquire geothermal heat and returned to the surface in a closed loop system.
    Type: Application
    Filed: September 27, 2021
    Publication date: May 19, 2022
    Inventor: David Alan McBay
  • Publication number: 20220049592
    Abstract: A spallation drilling apparatus is also disclosed that uses jets of hot fluid for drilling. This is compatible with drilling wells in high temperature zones, such as a lava dome. A simplified pyrolysis reactor for use in a lava dome is also disclosed, in which the dome functions to contain the reaction, and the apparatus to facilitate pyrolysis is far more compact.
    Type: Application
    Filed: June 17, 2021
    Publication date: February 17, 2022
    Inventor: David Alan McBay
  • Patent number: 11225951
    Abstract: The present disclosure relates to techniques for extracting heat energy from geothermal briny fluid. A briny fluid can be extracted from a geothermal production well and delivered to a heat exchanger. The heat exchanger can receive the briny fluid and transfer heat energy from the briny fluid to a molten salt. The molten salt can be pumped to a molten salt storage tank that can serve as energy storage. The briny fluid can be returned to a geothermal source via the production well. The briny fluid can remain in a closed-loop system, apart from the molten salt, from extraction through return to the geothermal production well.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: January 18, 2022
    Inventor: David Alan McBay
  • Patent number: 11131484
    Abstract: The disclosed technology includes methods of extracting geothermal energy, generally comprising the steps of: insertion of a thermal mass into a Heat Absorption Zone, absorbing heat in thermal mass, raising the thermal mass to a Heat Transfer Zone, and transferring the heat from the thermal mass. The acquired heat can be used to generate electricity or to drive an industrial process. The thermal mass can have internal chambers containing a liquid such as molten salt, and can also have structures facilitating heat exchange using a thermal exchange fluid, such as a gas or a glycol-based fluid. In some embodiments, two thermal masses are used as counterweights, reducing the energy consumed in bringing the heat in the thermal masses to the surface. In other embodiments, solid or molten salt can be directly supplied to a well shaft to acquire geothermal heat and returned to the surface in a closed loop system.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: September 28, 2021
    Inventor: David Alan McBay
  • Patent number: 11060388
    Abstract: A spallation drilling apparatus is also disclosed that uses jets of hot fluid for drilling. This is compatible with drilling wells in high temperature zones, such as a lava dome. A simplified pyrolysis reactor for use in a lava dome is also disclosed, in which the dome functions to contain the reaction, and the apparatus to facilitate pyrolysis is far more compact.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: July 13, 2021
    Inventor: David Alan McBay
  • Publication number: 20210180574
    Abstract: The present disclosure relates to techniques for extracting heat energy from geothermal briny fluid. A briny fluid can be extracted from a geothermal production well and delivered to a heat exchanger. The heat exchanger can receive the briny fluid and transfer heat energy from the briny fluid to a molten salt. The molten salt can be pumped to a molten salt storage tank that can serve as energy storage. The briny fluid can be returned to a geothermal source via the production well. The briny fluid can remain in a closed-loop system, apart from the molten salt, from extraction through return to the geothermal production well.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 17, 2021
    Inventor: David Alan McBay
  • Patent number: 10914293
    Abstract: The present disclosure relates to techniques for extracting heat energy from geothermal briny fluid. A briny fluid can be extracted from a geothermal production well and delivered to a heat exchanger. The heat exchanger can receive the briny fluid and transfer heat energy from the briny fluid to a molten salt. The molten salt can be pumped to a molten salt storage tank that can serve as energy storage. The briny fluid can be returned to a geothermal source via the production well. The briny fluid can remain in a closed-loop system, apart from the molten salt, from extraction through return to the geothermal production well.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: February 9, 2021
    Inventor: David Alan McBay
  • Publication number: 20200378233
    Abstract: A spallation drilling apparatus is also disclosed that uses jets of hot fluid for drilling. This is compatible with drilling wells in high temperature zones, such as a lava dome. A simplified pyrolysis reactor for use in a lava dome is also disclosed, in which the dome functions to contain the reaction, and the apparatus to facilitate pyrolysis is far more compact.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventor: David Alan McBay
  • Patent number: 10787894
    Abstract: A spallation drilling apparatus is also disclosed that uses jets of hot fluid for drilling. This is compatible with drilling wells in high temperature zones, such as a lava dome. A simplified pyrolysis reactor for use in a lava dome is also disclosed, in which the dome functions to contain the reaction, and the apparatus to facilitate pyrolysis is far more compact.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: September 29, 2020
    Inventor: David Alan McBay
  • Publication number: 20200200438
    Abstract: The disclosed technology includes methods of extracting geothermal energy, generally comprising the steps of: insertion of a thermal mass into a Heat Absorption Zone, absorbing heat in thermal mass, raising the thermal mass to a Heat Transfer Zone, and transferring the heat from the thermal mass. The acquired heat can be used to generate electricity or to drive an industrial process. The thermal mass can have internal chambers containing a liquid such as molten salt, and can also have structures facilitating heat exchange using a thermal exchange fluid, such as a gas or a glycol-based fluid. In some embodiments, two thermal masses are used as counterweights, reducing the energy consumed in bringing the heat in the thermal masses to the surface. In other embodiments, solid or molten salt can be directly supplied to a well shaft to acquire geothermal heat and returned to the surface in a closed loop system.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 25, 2020
    Inventor: David Alan McBay
  • Patent number: 10605491
    Abstract: The disclosed technology includes methods of extracting geothermal energy, generally comprising the steps of: insertion of a thermal mass into a Heat Absorption Zone, absorbing heat in thermal mass, raising the thermal mass to a Heat Transfer Zone, and transferring the heat from the thermal mass. The acquired heat can be used to generate electricity or to drive an industrial process. The thermal mass can have internal chambers containing a liquid such as molten salt, and can also have structures facilitating heat exchange using a thermal exchange fluid, such as a gas or a glycol-based fluid. In some embodiments, two thermal masses are used as counterweights, reducing the energy consumed in bringing the heat in the thermal masses to the surface. In other embodiments, solid or molten salt can be directly supplied to a well shaft to acquire geothermal heat and returned to the surface in a closed loop system.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: March 31, 2020
    Inventor: David Alan McBay
  • Publication number: 20190390660
    Abstract: The present disclosure relates to techniques for extracting heat energy from geothermal briny fluid. A briny fluid can be extracted from a geothermal production well and delivered to a heat exchanger. The heat exchanger can receive the briny fluid and transfer heat energy from the briny fluid to a molten salt. The molten salt can be pumped to a molten salt storage tank that can serve as energy storage. The briny fluid can be returned to a geothermal source via the production well. The briny fluid can remain in a closed-loop system, apart from the molten salt, from extraction through return to the geothermal production well.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 26, 2019
    Inventor: David Alan McBay
  • Patent number: 10330348
    Abstract: Techniques are provided for extracting geothermal energy, by providing salt into a well shaft that ends in a chamber in the Earth surrounded by a source of geothermal energy. The salt melts and heats up to the temperature within the chamber. The hot molten salt is then extracted and the heat from the molten salt is used as a source of energy to generate electricity or drive an industrial process. The salt can be re-used once the heat is extracted in a closed-loop system. According to some techniques, the salt is conveyed down the well by a pneumatic conveyer system or in other cases by using a mechanical system, such as a screw drive. Once returned to the surface, the molten salt can be used to heat graphite blocks for energy storage or be stored and transported to remote locations to extract the heat energy.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 25, 2019
    Inventor: David Alan McBay
  • Publication number: 20190063789
    Abstract: The disclosed technology includes methods of extracting geothermal energy, generally comprising the steps of: insertion of a thermal mass into a Heat Absorption Zone, absorbing heat in thermal mass, raising the thermal mass to a Heat Transfer Zone, and transferring the heat from the thermal mass. The acquired heat can be used to generate electricity or to drive an industrial process. The thermal mass can have internal chambers containing a liquid such as molten salt, and can also have structures facilitating heat exchange using a thermal exchange fluid, such as a gas or a glycol-based fluid. In some embodiments, two thermal masses are used as counterweights, reducing the energy consumed in bringing the heat in the thermal masses to the surface. In other embodiments, solid or molten salt can be directly supplied to a well shaft to acquire geothermal heat and returned to the surface in a closed loop system.
    Type: Application
    Filed: February 20, 2018
    Publication date: February 28, 2019
    Inventor: David Alan McBay
  • Publication number: 20180372377
    Abstract: This invention provides a method of extracting geothermal energy, comprising providing salt into a well shaft that ends in a chamber in the Earth surrounded by a source of geothermal energy. The salt melts and heats up to the temperature within the chamber. The hot molten salt is then extracted, and the heat from the molten salt is used as a source of energy to generate electricity or drive an industrial process. The salt can be re-used once the heat is extracted in a closed-loop system. In some embodiments of the invention, the salt is conveyed down the well by a pneumatic conveyer system, or in other cases by using a mechanical system, such as a screw drive. Once returned to the surface, the molten salt can be used to heat graphite blocks for energy storage, or be stored and transported to remote locations to extract the heat energy.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 27, 2018
    Inventor: David Alan McBay
  • Publication number: 20180283152
    Abstract: A spallation drilling apparatus is also disclosed that uses jets of hot fluid for drilling. This is compatible with drilling wells in high temperature zones, such as a lava dome. A simplified pyrolysis reactor for use in a lava dome is also disclosed, in which the dome functions to contain the reaction, and the apparatus to facilitate pyrolysis is far more compact.
    Type: Application
    Filed: May 8, 2018
    Publication date: October 4, 2018
    Inventor: David Alan McBay