Patents by Inventor David Alexander Sell
David Alexander Sell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240361525Abstract: Embodiments described provide for waveguide combiners with phase matching regions. The waveguide includes one or more gratings. The one or more gratings includes grating structures disposed over a waveguide substrate. A phase matching region is disposed over the waveguide substrate between the one or more gratings and a waveguide region. The phase matching region includes a waveguide layer having a thickness varying from a first end to a second end of the waveguide layer, or a plurality of structures having depths therebetween. The one or more of the depths are different from each other, or at least two or more structures of the plurality of structures have a first duty cycle different than a second duty cycle of the plurality of structures.Type: ApplicationFiled: April 26, 2024Publication date: October 31, 2024Inventors: Kunal SHASTRI, David Alexander SELL
-
Publication number: 20240337789Abstract: Embodiments of the present disclosure generally relate to augmented reality waveguide combiners. The waveguides includes a waveguide substrate, having a substrate refractive index (RI) nsub, a slab waveguide layer disposed over the waveguide substrate, the slab waveguide layer having a slab RI nswg and a slab depth dswg, the slab depth dswg from a lower surface to an upper surface of the slab waveguide layer, at least one grating defined by a plurality of grating structures, the grating structures are disposed in, on, or over the slab waveguide layer, and a superstrate between and over the grating structures, the superstrate having a superstrate RI nsuperstrate and an interface with the slab waveguide layer. The slab RI nswg is greater than the substrate RI nsub and the slab RI nswg is greater than the superstrate RI nsuperstrate.Type: ApplicationFiled: June 21, 2024Publication date: October 10, 2024Inventors: Kevin MESSER, David Alexander SELL, Samarth BHARGAVA
-
Publication number: 20240295693Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.Type: ApplicationFiled: April 8, 2024Publication date: September 5, 2024Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
-
Patent number: 12050344Abstract: Embodiments of the present disclosure generally relate to augmented reality waveguide combiners. The waveguides includes a waveguide substrate, having a substrate refractive index (RI) nsub, a slab waveguide layer disposed over the waveguide substrate, the slab waveguide layer having a slab RI nswg and a slab depth dswg, the slab depth dswg from a lower surface to an upper surface of the slab waveguide layer, at least one grating defined by a plurality of grating structures, the grating structures are disposed in, on, or over the slab waveguide layer, and a superstrate between and over the grating structures, the superstrate having a superstrate RI nsuperstrate and an interface with the slab waveguide layer. The slab RI nswg is greater than the substrate RI nsub and the slab RI nswg is greater than the superstrate RI nsuperstrate.Type: GrantFiled: October 27, 2023Date of Patent: July 30, 2024Assignee: Applied Materials, Inc.Inventors: Kevin Messer, David Alexander Sell, Samarth Bhargava
-
Patent number: 12044964Abstract: Embodiments of the present disclosure generally relate to methods of forming a substrate having a target thickness distribution at one or more eyepiece areas across a substrate. The substrate includes eyepiece areas corresponding to areas where optical device eyepieces are to be formed on the substrate. Each eyepiece area includes a target thickness distribution. A base substrate thickness distribution of a base substrate is measured such that a target thickness change can be determined. The methods described herein are utilized along with the target thickness change to form a substrate with the target thickness distribution.Type: GrantFiled: June 19, 2023Date of Patent: July 23, 2024Assignee: Applied Materials, Inc.Inventors: David Alexander Sell, Samarth Bhargava
-
Publication number: 20240142699Abstract: Embodiments of the present disclosure generally relate to augmented reality waveguide combiners. The waveguides includes a waveguide substrate, having a substrate refractive index (RI) nsub, a slab waveguide layer disposed over the waveguide substrate, the slab waveguide layer having a slab RI nswg and a slab depth dswg, the slab depth dswg from a lower surface to an upper surface of the slab waveguide layer, at least one grating defined by a plurality of grating structures, the grating structures are disposed in, on, or over the slab waveguide layer, and a superstrate between and over the grating structures, the superstrate having a superstrate RI nsuperstrate and an interface with the slab waveguide layer. The slab RI nswg is greater than the substrate RI nsub and the slab RI nswg is greater than the superstrate RI nsuperstrate.Type: ApplicationFiled: October 27, 2023Publication date: May 2, 2024Inventors: Kevin MESSER, David Alexander SELL, Samarth BHARGAVA
-
Publication number: 20240126012Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.Type: ApplicationFiled: October 18, 2023Publication date: April 18, 2024Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
-
Publication number: 20240126166Abstract: Embodiments of the present disclosure generally relate to methods of forming a substrate having a target thickness distribution at one or more eyepiece areas across a substrate. The substrate includes eyepiece areas corresponding to areas where optical device eyepieces are to be formed on the substrate. Each eyepiece area includes a target thickness distribution. A base substrate thickness distribution of a base substrate is measured such that a target thickness change can be determined. The methods described herein are utilized along with the target thickness change to form a substrate with the target thickness distribution.Type: ApplicationFiled: December 28, 2023Publication date: April 18, 2024Inventors: David Alexander SELL, Samarth BHARGAVA
-
Publication number: 20240099617Abstract: Method and apparatuses for diffuse optical tomography (DOT) are disclosed herein. A DOT device includes a substrate, one or more radiation sources, a plurality of detectors, and structures disposed over the second surface of the plurality of detectors. The one or more radiation sources are disposed over or under a surface of the substrate. Each detector of the plurality of detectors has a first surface and a second surface. The first surface is opposite the second surface. The first surface of the plurality of detectors disposed over or under the surface of the substrate. The method of DOT method of includes emitting and scattering radiation from one or more sources of a DOT device; detecting scattered radiation with a plurality of detectors of the DOT device; and translating the scattered radiation that is detected into data.Type: ApplicationFiled: September 28, 2023Publication date: March 28, 2024Inventors: David Alexander SELL, Paul GALLAGHER, Christopher G. TALBOT, Christopher John WRIGHT, Harry Michael CRONIN
-
Publication number: 20230333466Abstract: Embodiments of the present disclosure generally relate to methods of forming a substrate having a target thickness distribution at one or more eyepiece areas across a substrate. The substrate includes eyepiece areas corresponding to areas where optical device eyepieces are to be formed on the substrate. Each eyepiece area includes a target thickness distribution. A base substrate thickness distribution of a base substrate is measured such that a target thickness change can be determined. The methods described herein are utilized along with the target thickness change to form a substrate with the target thickness distribution.Type: ApplicationFiled: June 19, 2023Publication date: October 19, 2023Inventors: David Alexander SELL, Samarth BHARGAVA
-
Publication number: 20230118081Abstract: Embodiments of the present disclosure describe waveguides having device structures with multiple portions and methods of forming the waveguide having multiportion device structures. The plurality of device structures are formed having two or more portions. The materials of the plurality of portions are chosen such that impedance matching is enabled between the portions to reduce reflection of light from the optical device.Type: ApplicationFiled: September 27, 2022Publication date: April 20, 2023Inventors: Jianji YANG, Samarth BHARGAVA, David Alexander SELL, Kevin MESSER
-
Patent number: 9018077Abstract: Substrates may be bonded according to a method comprising contacting a first bonding surface of a first substrate with a second bonding surface of a second substrate to form an assembly; and compressing the assembly in the presence of an oxidizing atmosphere under suitable conditions to form a bonding layer between the first and second surfaces, wherein the first bonding surface comprises a polarized surface layer; the second bonding surface comprises a hydrophilic surface layer; the first and second bonding surfaces are different.Type: GrantFiled: April 30, 2010Date of Patent: April 28, 2015Assignee: Arizona Board of Regents, A Body Corporate of the State of Arizona, Acting for and on Behalf of Arizona State UniversityInventors: Nicole Herbots, Robert J. Culbertson, James Bradley, Murdock Allen Hart, David Alexander Sell, Shawn David Whaley
-
Publication number: 20120132263Abstract: Substrates may be bonded according to a method comprising contacting a first bonding surface of a first substrate with a second bonding surface of a second substrate to form an assembly; and compressing the assembly in the presence of an oxidizing atmosphere under suitable conditions to form a bonding layer between the first and second surfaces, wherein the first bonding surface comprises a polarized surface layer; the second bonding surface comprises a hydrophilic surface layer; the first and second bonding surfaces are different.Type: ApplicationFiled: April 30, 2010Publication date: May 31, 2012Applicant: Arizona Board of Regents, a body Corporate acting for and on behalf of Arizona State UniversityInventors: Nicole Herbots, Robert J. Culbertson, James Bradley, Murdock Allen Hart, David Alexander Sell, Shawn David Whaley