Patents by Inventor David Aplin

David Aplin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9024295
    Abstract: A 1D nanowire photodetector device includes a nanowire that is individually contacted by electrodes for applying a longitudinal electric field which drives the photocurrent. An intrinsic radial electric field to inhibits photo-carrier recombination, thus enhancing the photocurrent response. Circuits of 1D nanowire photodetectors include groups of photodetectors addressed by their individual 1D nanowire electrode contacts. Placement of 1D nanostructures is accomplished with registration onto a substrate. A substrate is patterned with a material, e.g., photoresist, and trenches are formed in the patterning material at predetermined locations for the placement of 1D nanostructures. The 1D nanostructures are aligned in a liquid suspension, and then transferred into the trenches from the liquid suspension. Removal of the patterning material places the 1D nanostructures in predetermined, registered positions on the substrate.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 5, 2015
    Assignee: The Regents of the University of California
    Inventors: Deli Wang, Cesare Soci, Yu-Hwa Lo, Arthur Zhang, David Aplin, Lingquan Wang, Shadi Dayeh, Xin Yu Bao
  • Patent number: 8440997
    Abstract: A 1D nanowire photodetector device includes a nanowire that is individually contacted by electrodes for applying a longitudinal electric field which drives the photocurrent. An intrinsic radial electric field to inhibits photo-carrier recombination, thus enhancing the photocurrent response. Circuits of 1D nanowire include groups of photodetectors addressed by their individual 1D nanowire electrode contacts. Placement of 1D nanostructures is accomplished with registration onto a substrate. A substrate is patterned with a material, e.g., photoresist, and trenches are formed in the patterning material at predetermined locations for the placement of 1D nanostructures. The 1D nanostructures are aligned in a liquid suspension, and then transferred into the trenches from the liquid suspension. Removal of the patterning material places the 1D nanostructures in predetermined, registered positions on the substrate.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of California
    Inventors: Deli Wang, Cesare Soci, Yu-Hwa Lo, Arthur Zhang, David Aplin, Lingquan Wang, Shadi Dayeh, Xin Yu Bao
  • Patent number: 8426224
    Abstract: Semiconductor nanowire arrays are used to replace the conventional planar layered construction for fabrication of LEDs and laser diodes. The nanowire arrays are formed from III-V or II-VI compound semiconductors on a conducting substrate. For fabrication of the device, an electrode layer is deposited on the substrate, a core material of one of a p-type and n-type compound semiconductor material is formed on top of the electrode as a planar base with a plurality of nanowires extending substantially vertically therefrom. A shell material of the other of the p-type and n-type compound semiconductor material is formed over an outer surface of the core material so that a p-n junction is formed across the planar base and over each of the plurality of nanowires. An electrode coating is formed an outer surface of the shell material for providing electrical contact to a current source.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: April 23, 2013
    Assignee: The Regents of the University of California
    Inventors: Deli Wang, Xinyu Bao, Bin Xiang, Cesare Soci, David Aplin
  • Publication number: 20110163292
    Abstract: Semiconductor nanowire arrays are used to replace the conventional planar layered construction for fabrication of LEDs and laser diodes. The nanowire arrays are formed from III-V or II-VI compound semiconductors on a conducting substrate. For fabrication of the device, an electrode layer is deposited on the substrate, a core material of one of a p-type and n-type compound semiconductor material is formed on top of the electrode as a planar base with a plurality of nanowires extending substantially vertically therefrom. A shell material of the other of the p-type and n-type compound semiconductor material is formed over an outer surface of the core material so that a p-n junction is formed across the planar base and over each of the plurality of nanowires. An electrode coating is formed an outer surface of the shell material for providing electrical contact to a current source.
    Type: Application
    Filed: December 18, 2007
    Publication date: July 7, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Deli Wang, Xinyu Bao, Bin Xiang, Cesare Soci, David Aplin
  • Publication number: 20100295019
    Abstract: A practical ID nanowire photodetector with high gain that can be controlled by a radial electric field established in the ID nanowire. A ID nanowire photodetector device of the invention includes a nanowire that is individually contacted by electrodes for applying a longitudinal electric field which drives the photocurrent. An intrinsic radial electric field to the nanowire inhibits photo-carrier recombination, thus enhancing the photocurrent response. The invention further provides circuits of ID nanowire photodetectors, with groups of photodetectors addressed by their individual ID nanowires electrode contacts. The invention also provides a method for placement of ID nanostructures, including nanowires, with registration onto a substrate. A substrate is patterned with a material, e.g., photoresist, and trenches are formed in the patterning material at predetermined locations for the placement of ID nanostructures.
    Type: Application
    Filed: February 26, 2008
    Publication date: November 25, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Deli Wang, Cesare Soci, Yu-Hwa Lo, Arthur Zhang, David Aplin, Lingquan Wang, Shadi Dayeh, Xin Yu Bao