Patents by Inventor David B. Beach

David B. Beach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6663976
    Abstract: A laminate article comprises a substrate and a biaxially textured (RE1xRE2(1−x))2O3 buffer layer over the substrate, wherein 0<x<1 and RE1 and RE2 are each selected from the group consisting of Nd, Sm, Eu, Ho, Er, Lu, Gd, Tb, Dy, Tm, and Yb. The (RE1xRE2(1−x))2O3 buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE1xRE2(1−x))2O3 buffer layer. A layer of CeO2 between the YBCO layer and the (RE1xRE2(1−x))2O3 buffer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (R1xRE2(1−x))2O3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: December 16, 2003
    Assignee: UT-Battelle, LLC
    Inventors: David B. Beach, Jonathan S. Morrell, Mariappan Paranthaman, Thomas Chirayil, Eliot D. Specht, Amit Goyal
  • Publication number: 20020178999
    Abstract: A laminate article comprises a substrate and a biaxially textured (RE1xRE2(1−x))2O3 buffer layer over the substrate, wherein 0<x<1 and RE1 and RE2 are each selected from the group consisting of Nd, Sm, Eu, Ho, Er, Lu, Gd, Tb, Dy, Tm, and Yb. The (RE1xRE2(1−x))2O3 buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE1xRE2(1−x))2O3 buffer layer. A layer of CeO2 between the YBCO layer and the (RE1xRE2(1−x))2O3 buffer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (R1xRE2(1−x))2O3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 5, 2002
    Inventors: David B. Beach, Jonathan S. Morrell, Mariappan Paranthaman, Thomas Chirayil, Eliot D. Specht, Amit Goyal
  • Publication number: 20020134300
    Abstract: A laminate article comprises a substrate and a biaxially textured (RE1xRE2(1−x))2O3 buffer layer over the substrate, wherein 0<x<1 and RE1 and RE2 are each selected from the group consisting of Nd, Sm, Eu, Ho, Er, Lu, Gd, Tb, Dy, Tm, and Yb. The (RE1xRE2(1−x))2O3 buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE1xRE2(1−x))2O3 buffer layer. A layer of CeO2 between the YBCO layer and the (RE1xRE2(1−x))2O3 buffer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (RE1xRE2(1−x))2O3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Application
    Filed: September 30, 1999
    Publication date: September 26, 2002
    Inventors: DAVID B. BEACH, JONATHAN S. MORRELL, MARIAPPAN PARATHAMAN, THOMAS G. CHIRAYIL, ELIOT D. SPECHT, AMIT GOYAL
  • Patent number: 6440211
    Abstract: A laminate article comprises a substrate and a biaxially textured (RE1xRE2(1−x))2O3 buffer layer over the substrate, wherein 0<x<1 and RE1 and RE2 are each selected from the group consisting of Nd, Sm, Eu, Ho, Er, Lu, Gd, Tb, Dy, Tm, and Yb. The (RE1xRE2(1−x))2O3 buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE1xRE2(1−x))2O3 buffer layer. A layer of CeO2 between the YBCO layer and the (RE1xRE2(1−x))2O3 buffer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (RE1xRE2(1−x))2O3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: August 27, 2002
    Assignee: UT-Battelle, LLC
    Inventors: David B. Beach, Jonathan S. Morrell, Mariappan Paranthaman, Thomas Chirayil, Eliot D. Specht, Amit Goyal
  • Patent number: 6235402
    Abstract: A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: May 22, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Shara S. Shoup, Mariappan Paranthamam, David B. Beach, Donald M. Kroeger, Amit Goyal
  • Patent number: 6077344
    Abstract: A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: June 20, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Shara S. Shoup, Mariappan Paranthamam, David B. Beach, Donald M. Kroeger, Amit Goyal
  • Patent number: 5534079
    Abstract: A CVD process for producing a rare earth-doped, epitaxial semiconductor layer on a substrate is disclosed. The process utilizes a silane or germane and a rare earth compound in the gas phase. By this method single phase, rare earth-doped semiconductor layers, supersaturated in the rare earth, are produced. The preferred rare earth is erbium and the preferred precursors for depositing erbium by CVD are erbium hexafluoroacetylacetonate, acetylacetonate, tetramethylheptanedionate and flurooctanedionate. The process may be used to produce optoelectronic devices comprising a silicon substrate and an erbium-doped epitaxial silicon film.
    Type: Grant
    Filed: March 9, 1994
    Date of Patent: July 9, 1996
    Assignee: International Business Machines Corporation
    Inventor: David B. Beach
  • Patent number: 5461536
    Abstract: A storage capacitor having high dielectric constant materials and a method for forming same are described. The method solves the problems associated with fabrication of planar capacitors for DRAM chips constructed from inorganic oxides with perovskite structure. These materials are not readily etched by conventional ion etching techniques. These materials also react with silicon and silicon dioxide and the disclosed process avoids these interactions.
    Type: Grant
    Filed: November 29, 1994
    Date of Patent: October 24, 1995
    Assignee: International Business Machines Corporation
    Inventors: David B. Beach, Alfred Grill, Christopher J. Smart
  • Patent number: 5416042
    Abstract: A storage capacitor having high dielectric constant materials and a method for forming same are described. The method solves the problems associated with fabrication of planar capacitors for DRAM chips constructed from inorganic oxides with perovskite structure. These materials are not readily etched by conventional ion etching techniques. These materials also react with silicon and silicon dioxide and the disclosed process avoids these interactions.
    Type: Grant
    Filed: June 9, 1994
    Date of Patent: May 16, 1995
    Assignee: International Business Machines Corporation
    Inventors: David B. Beach, Alfred Grill, Christopher J. Smart
  • Patent number: 5322813
    Abstract: A CVD process for producing a rare earth-doped, epitaxial semiconductor layer on a substrate is disclosed. The process utilizes a silane or germane and a rare earth compound in the gas phase. By this method single phase, rare earth-doped semiconductor layers, supersaturated in the rare earth, are produced. The preferred rare earth is erbium and the preferred precursors for depositing erbium by CVD are erbium hexafluoroacetylacetonate, acetylacetonate, tetramethylheptanedionate and flurooctanedionate. The process may be used to produce optoelectronic devices comprising a silicon substrate and an erbium-doped epitaxial silicon film.
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: June 21, 1994
    Assignee: International Business Machines Corporation
    Inventor: David B. Beach
  • Patent number: 4948623
    Abstract: Improved processes are described for the deposition of Cu and group IB metals such as Ag and Au. These processes include thermal CVD, photothermal depositions and photochemical deposition. The gaseous precursor which leads to successful deposition of high quality films at low temperatures includes a cyclopentadienyl ring, a two electron donor ligand, and the group IB metal in a +1 oxidation state. In addition, derivatives of the cyclopentadienyl ring can be used where the substituents on the ring include those selected from alkyl groups, halide groups, and psuedohalide groups. In addition, the two electron donor ligand can be selected from the group consisting of trivalent phosphines, amines and arsines. A representative precursor for the deposition of Cu is triethylphosphine cyclopentadienyl copper (I).
    Type: Grant
    Filed: September 29, 1989
    Date of Patent: August 14, 1990
    Assignee: International Business Machines Corporation
    Inventors: David B. Beach, Joseph M. Jasinski