Patents by Inventor David Böhnisch

David Böhnisch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220403239
    Abstract: A silicate-based lanthanide ion doped material converts electromagnetic radiation energy of a longer wavelength of below 530 nm to electromagnetic radiation energy of shorter wavelengths in the range of 220 to 425 nm. The silicate-based material is a crystalline silicate material doped with lanthanide ions selected from praseodymium, gadolinium, erbium, and neodymium. For co-doping, at least two of the lanthanide ions are used. The silicate-based material is obtainable from a blend comprising salts and an organic solvent, followed by specific calcination processes and tribological impacts to adjust particle size and to increase the crystallinity of the particles. The silicate-based material can be used to inactivate microorganisms or cells covering a surface containing the silicate-based material under exposure of electromagnetic radiation energy of a longer wavelength of below 500 nm.
    Type: Application
    Filed: October 5, 2020
    Publication date: December 22, 2022
    Applicant: Evonik Operations GmbH
    Inventors: Stefan Fischer, David Böhnisch, Thomas Jüstel, Simone Schulte, Markus Hallack
  • Publication number: 20220403238
    Abstract: A garnet is doped with a lanthanide ion selected from praseodymium, gadolinium, erbium, and neodymium. For co-doping, at least two of the lanthanide ions are selected. The lanthanide ion doped garnet converts electromagnetic radiation energy of a longer wavelength of below 530 nm to electromagnetic radiation energy of shorter wavelengths in the range of 220 to 425 nm. The garnet is crystalline and is obtainable from a mixture of salts or oxides of the components, in the presence of a chelating agent, that are dissolved in acid. This is followed by a specific calcination process to produce the garnet and, optionally, to adjust particle size and increase the crystallinity of the particles. The garnet can be used to inactivate microorganisms or cells covering a surface containing silicate-based material under exposure of electromagnetic radiation energy of a longer wavelength of below 500 nm.
    Type: Application
    Filed: October 5, 2020
    Publication date: December 22, 2022
    Applicant: Evonik Operations GmbH
    Inventors: Stefan FISCHER, David Böhnisch, Thomas Jüstel, Simone Schulte, Markus Hallack