Patents by Inventor David B. Hurley

David B. Hurley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8639476
    Abstract: A computer-implemented method is provided for generating the estimation of current position, velocity and acceleration state vectors and associated uncertainty estimation (covariance) of a boosting ballistic missile. The method includes constructing a state tensor of the projectile from a plurality of sensor measurements in Earth-Centered, Earth-Fixed (ECEF) coordinates; translating the state tensor to Cartesian coordinates as a transform state; determining a covariance matrix from the transform state; updating the transformed state as an updated transform state; and updating the covariance matrix as an updated covariance. The process can further include adjusting the covariance matrix by an approximate transition matrix and a process noise matrix. The noise matrix can be translated from a local noise matrix based on a propagation time-step, a scaling parameter, and a bias process noise level. A time-of-flight in the state tensor can be updated by smoothing from a launch event.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: January 28, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Craig A. Martell, John A. Lawton, David B. Hurley
  • Publication number: 20120316819
    Abstract: A computer-implemented method is provided for generating the estimation of current position, velocity and acceleration state vectors and associated uncertainty estimation (covariance) of a boosting ballistic missile. The method includes constructing a state tensor of the projectile from a plurality of sensor measurements in Earth-Centered, Earth-Fixed (ECEF) coordinates; translating the state tensor to Cartesian coordinates as a transform state; determining a covariance matrix from the transform state; updating the transformed state as an updated transform state; and updating the covariance matrix as an updated covariance. The process can further include adjusting the covariance matrix by an approximate transition matrix and a process noise matrix. The noise matrix can be translated from a local noise matrix based on a propagation time-step, a scaling parameter, and a bias process noise level. A time-of-flight in the state tensor can be updated by smoothing from a launch event.
    Type: Application
    Filed: January 31, 2012
    Publication date: December 13, 2012
    Applicant: United States Government, as represented by the Secretary of the Navy
    Inventors: Craig A. Martell, John A. Lawton, David B. Hurley