Patents by Inventor David B. Marshall

David B. Marshall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955845
    Abstract: An axial flux motor incorporates a rotor having a plurality of pockets receiving magnet assemblies. A retention device is engaged from an inactive surface of at least one magnet assembly to one or more structural elements surrounding an associate one of the plurality of pockets in the rotor.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: April 9, 2024
    Assignee: LaunchPoint Electric Propulsion Solutions Inc.
    Inventors: Michael R. Ricci, David B. Paden, Brian J. Clark, Claire Cappe, Zachary J. Marshall, Bradley E. Paden
  • Patent number: 9664053
    Abstract: An integral textile structure for 3-D CMC turbine airfoils includes top and bottom walls made from an angle-interlock weave, each of the walls comprising warp and weft fiber tows. The top and bottom walls are merged on a first side parallel to the warp fiber tows into a single wall along a portion of their widths, with the weft fiber tows making up the single wall interlocked through the wall's thickness such that delamination of the wall is inhibited. The single wall suitably forms the trailing edge of an airfoil; the top and bottom walls are preferably joined along a second side opposite the first side and parallel to the radial fiber tows by a continuously curved section in which the weave structure remains continuous with the weave structure in the top and bottom walls, the continuously curved section being the leading edge of the airfoil.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 30, 2017
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: David B. Marshall, Brian N. Cox, Olivier H. Sudre
  • Patent number: 9528000
    Abstract: A hot-mix asphalt paving mixture includes the use of a hard, angular, non-carbonate ½? minus igneous crushed rock, washed rounded No. 100 sieve silica sand particles, ½? minus recycled asphalt pavement particles, and a performance-graded bituminous liquid asphalt binder, thereby to produce an environmentally-friendly hot asphalt mixture that is laid with minimal compaction effort, and without the use of conventional compaction-aiding additives that chemically alter the viscosity of the liquid asphalt binder. During compaction, the rounded silica sand particles react with the igneous rock particles as a mechanical compaction aid, thereby allowing the angular particles to achieve proper aggregate interlock with minimal compactive effort. The aggregate composition comprises about 75% igneous crushed rock, about 5% processed round silica sand particles, about 20% recycled asphalt pavement, and about 5% binder. The resultant pavement is skid-resistant, resists rutting, and has a permanent dark color.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: December 27, 2016
    Assignee: Fred Weber Inc.
    Inventors: Konn E. Wilson, David B. Marshall
  • Patent number: 9470603
    Abstract: In one embodiment, a morphable composite three-dimensional structure is disclosed. The morphable composite three-dimensional structure comprises a flexible fiber-reinforced ceramic composite comprising a fiber preform and a ceramic matrix material infused therein. The flexible fiber-reinforced ceramic composite defines a flowpath having a three-dimensional cross-section. The cross-section of the flowpath is variable along the length of the flowpath. A plurality of anchors are integrally formed in the fiber preform. The plurality of anchors extend through a thickness of the ceramic matrix. The plurality of anchors are configured to couple to at least one actuator. The at least one actuator is actuatable to vary the three-dimensional cross-section of the flowpath.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: October 18, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Brian N. Cox, David B. Marshall, Sergio L. dos Santos e Lucato
  • Publication number: 20150308922
    Abstract: In one embodiment, a morphable composite three-dimensional structure is disclosed. The morphable composite three-dimensional structure comprises a flexible fiber-reinforced ceramic composite comprising a fiber preform and a ceramic matrix material infused therein. The flexible fiber-reinforced ceramic composite defines a flowpath having a three-dimensional cross-section. The cross-section of the flowpath is variable along the length of the flowpath. A plurality of anchors are integrally formed in the fiber preform. The plurality of anchors extend through a thickness of the ceramic matrix. The plurality of anchors are configured to couple to at least one actuator. The at least one actuator is actuatable to vary the three-dimensional cross-section of the flowpath.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 29, 2015
    Inventors: Brian N. Cox, David B. Marshall, Sergio L. dos Santos d Lucato
  • Publication number: 20150226071
    Abstract: An integral textile structure for 3-D CMC turbine airfoils includes top and bottom walls made from an angle-interlock weave, each of the walls comprising warp and weft fiber tows. The top and bottom walls are merged on a first side parallel to the warp fiber tows into a single wall along a portion of their widths, with the weft fiber tows making up the single wall interlocked through the wall's thickness such that delamination of the wall is inhibited. The single wall suitably forms the trailing edge of an airfoil; the top and bottom walls are preferably joined along a second side opposite the first side and parallel to the radial fiber tows by a continuously curved section in which the weave structure remains continuous with the weave structure in the top and bottom walls, the continuously curved section being the leading edge of the airfoil.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 13, 2015
    Applicant: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: DAVID B. MARSHALL, Brian N. Cox, Olivier H. Sudre
  • Publication number: 20150152264
    Abstract: A hot-mix asphalt paving mixture includes the use of a hard, angular, non-carbonate ½? minus igneous crushed rock, washed rounded No. 100 sieve silica sand particles, ½? minus recycled asphalt pavement particles, and a performance-graded bituminous liquid asphalt binder, thereby to produce an environmentally-friendly hot asphalt mixture that is laid with minimal compaction effort, and without the use of conventional compaction-aiding additives that chemically alter the viscosity of the liquid asphalt binder. During compaction, the rounded silica sand particles react with the igneous rock particles as a mechanical compaction aid, thereby allowing the angular particles to achieve proper aggregate interlock with minimal compactive effort. The aggregate composition comprises about 75% igneous crushed rock, about 5% processed round silica sand particles, about 20% recycled asphalt pavement, and about 5% binder. The resultant pavement is skid-resistant, resists rutting, and has a permanent dark color.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 4, 2015
    Applicant: FRED WEBER, INC.
    Inventors: Konn E. Wilson, David B. Marshall
  • Patent number: 8758908
    Abstract: Aqueous precursor solutions are described that comprise at least one monazite-based material precursor, at least one xenotime-based material precursor or a combination thereof; and a plurality of fine suspended particles of an oxide material. Contemplated oxide composites, as described herein, comprise a plurality of fibers surrounded by at least one monazite or xenotime-based material, wherein the oxide composite has nearly a fully dense matrix. Contemplated embodiments disclosed herein provides a method for producing an oxide composite with nearly fully dense matrix and with all fibers surrounded by a monazite- or xenotime-based material that prevents embrittlement at temperatures at least as high as 1200° C.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 24, 2014
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: David B. Marshall, Janet B. Davis, Peter E. D. Morgan
  • Publication number: 20140065292
    Abstract: Aqueous precursor solutions are described that comprise at least one monazite-based material precursor, at least one xenotime-based material precursor or a combination thereof; and a plurality of fine suspended particles of an oxide material. Contemplated oxide composites, as described herein, comprise a plurality of fibers surrounded by at least one monazite or xenotime-based material, wherein the oxide composite has nearly a fully dense matrix. Contemplated embodiments disclosed herein provides a method for producing an oxide composite with nearly fully dense matrix and with all fibers surrounded by a monazite- or xenotime-based material that prevents embrittlement at temperatures at least as high as 1200° C.
    Type: Application
    Filed: March 7, 2008
    Publication date: March 6, 2014
    Inventors: David B. Marshall, Janet B. Davis, Peter D. Morgan
  • Publication number: 20140014263
    Abstract: A protective hybrid composite for a rotor blade is based on the use of tape cast ceramic layers densified by pre-ceramic polymer infiltration methods and laminated together with polymer matrix composite prepregs, with or without an embedded metallic mesh, to form a conforming helicopter blade cladding that is laminated to the blade surface for added erosion protection. The hybrid composite is fabricated to net shape and laminated to the blade using either an adhesive or a polymer composite prepreg inner layer. Installation is accomplished by a standard composite fabrication method of vacuum bagging the blade while the system is laminated to its surface. Repair methods based on removal of ceramic tiles is facilitated by incorporation of a metallic mesh element laminated beneath the ceramic tiles that can be used to heat the tile and decrease its adhesion strength.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 16, 2014
    Applicant: Teledyne Scientific & Imaging, LLC
    Inventors: Janet B. Davis, David B. Marshall, Olivier H. Sudre, Sergio dos Santos e Lucato
  • Patent number: 8590842
    Abstract: An apparatus and method for an improved morphing flow path. A flexible structure has a plurality of sections which include a first section and a second section. An actuator system is connected to the flexible structure and includes a number of actuators. The actuator system is capable of changing a configuration of the flexible structure. A controller is connected to the actuator system. The controller is capable of changing a position of a number of actuators within the actuator system.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: November 26, 2013
    Assignee: The Boeing Company
    Inventors: Sergio L. dos Santos e Lucato, David B. Marshall, Daniel Edward Driemeyer
  • Patent number: 8556589
    Abstract: A protective hybrid composite for a rotor blade is based on the use of tape cast ceramic layers densified by pre-ceramic polymer infiltration methods and laminated together with polymer matrix composite prepregs, with or without an embedded metallic mesh, to form a conforming helicopter blade cladding that is laminated to the blade surface for added erosion protection. The hybrid composite is fabricated to net shape and laminated to the blade using either an adhesive or a polymer composite prepreg inner layer. Installation is accomplished by a standard composite fabrication method of vacuum bagging the blade while the system is laminated to its surface. Repair methods based on removal of ceramic tiles is facilitated by incorporation of a metallic mesh element laminated beneath the ceramic tiles that can be used to heat the tile and decrease its adhesion strength.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 15, 2013
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Janet B Davis, David B Marshall, Olivier H Sudre, Sergio dos Santos e Lucato
  • Publication number: 20110180145
    Abstract: An apparatus and method for an improved morphing flow path. A flexible structure has a plurality of sections which include a first section and a second section. An actuator system is connected to the flexible structure and includes a number of actuators. The actuator system is capable of changing a configuration of the flexible structure. A controller is connected to the actuator system. The controller is capable of changing a position of a number of actuators within the actuator system.
    Type: Application
    Filed: March 18, 2009
    Publication date: July 28, 2011
    Applicant: THE BOEING COMPANY
    Inventors: Sergio L. dos Santos e Lucato, David B. Marshall, Daniel Edward Driemeyer
  • Publication number: 20100329880
    Abstract: A protective hybrid composite for a rotor blade is based on the use of tape cast ceramic layers densified by pre-ceramic polymer infiltration methods and laminated together with polymer matrix composite prepregs, with or without an embedded metallic mesh, to form a conforming helicopter blade cladding that is laminated to the blade surface for added erosion protection. The hybrid composite is fabricated to net shape and laminated to the blade using either an adhesive or a polymer composite prepreg inner layer. Installation is accomplished by a standard composite fabrication method of vacuum bagging the blade while the system is laminated to its surface. Repair methods based on removal of ceramic tiles is facilitated by incorporation of a metallic mesh element laminated beneath the ceramic tiles that can be used to heat the tile and decrease its adhesion strength.
    Type: Application
    Filed: December 30, 2009
    Publication date: December 30, 2010
    Applicant: TELEDYNE SCIENTIFIC & IMAGING, INC.
    Inventors: Janet B. Davis, David B. Marshall, Olivier H. Sudre, Sergio dos Santos e Lucato
  • Publication number: 20100081350
    Abstract: A method of making a smooth surfaced, fiber reinforced ceramic matrix composite includes the steps of providing a fiber preform, the preform having a surface containing voids; placing fibers into the voids; coating the preform fibers and the void fibers with a coating material to create a weak interface; and infiltrating the coated fibers with a matrix material to infill the voids and preform, and form strongly bonded networks within the voids. Alternatively, the resulting smooth surfaced, fiber reinforced ceramic matrix composite may include, in addition to the first coating material on the preform fibers and the void fibers and the matrix material within the coated fibers and the preform to infill the voids and preform, a second coating material on the preform fibers and the void fibers, creating a second coating of substantially uniform thickness on the fibers and forming strongly bonded networks within the voids.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Brock S. McCabe, David B. Marshall
  • Patent number: 7516918
    Abstract: An exemplary morphable ceramic composite structure includes a flexible ceramic composite skin and a truss structure attached to the skin. The truss structure can morph shape of the skin from a first shape to a second shape that is different than the first shape. The flexible ceramic composite skin may include a single-layer of three-dimensional woven fabric fibers and a ceramic matrix composite. The truss structure may include at least one actuatable element or an actuator may move a portion of the truss structure from a first position to a second position. A cooling component may be disposed in thermal communication with the skin. The cooling component may include thermal insulation or a cooling system that circulates cooling fluid in thermal communication with the skin. The morphable ceramic composite structure may be incorporated into any of an air inlet, combustor, exhaust nozzle, or control surfaces of a hypersonic aircraft.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: April 14, 2009
    Assignee: The Boeing Company
    Inventors: Brian N. Cox, Janet B. Davis, Sergio Luis dos Santos e Lucato, David B. Marshall, Brock S. McCabe, Olivier H. Sudre
  • Patent number: 6863999
    Abstract: Monazites and xenotimes are rare-earth phosphates showing a combination of properties expected to be suitable for thermal barrier coatings. For example, lanthanum phosphate (La-monazite) can be used to form thermal barrier coatings to protect superalloy and ceramic parts exposed to high temperature and damage by sulfur, vanadium, phosphorus and other contaminants. The monazite or xenotime coatings can be applied using any of the common application methods including EB-PVD, laser ablation and plasma spraying. The stoichiometry of the coatings can be modulated according to the stoichiometry of specially prepared starting target (source) material. The most effective coatings appear to be largely crystalline and show a columnar structure with feather-like microstructure. For La-monazite, effective coatings between 10 and 500 micrometers in thickness can be deposited on substrates having temperatures between about 750° C. and about 950° C.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: March 8, 2005
    Assignee: Innovative Technology Licensing, LLC
    Inventors: Olivier H. Sudre, David B. Marshall, Peter E. D. Morgan
  • Patent number: 6758386
    Abstract: A method of joining a ceramic matrix composite rocket nozzle to a metal manifold is provided, wherein a silicon nitride insert is disposed inside the ceramic matrix composite rocket nozzle and the metal manifold to provide a joint therebetween. The silicon nitride insert is preferably co-processed with the ceramic matrix composite rocket nozzle such that the ceramic matrix provides a bond between the rocket nozzle and the insert. The metal manifold is then secured to the silicon nitride insert, preferably using brazing, to form a joint assembly.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: July 6, 2004
    Assignee: The Boeing Company
    Inventors: David B. Marshall, Min Z Berbon, John R. Porter
  • Publication number: 20040110440
    Abstract: Monazite or xenotime-based blanket coatings that stiffen ceramic fabrics without causing embrittlement at temperatures of at least as high as 2400° F. are provided. Methods for making the coatings are also provided. The methods comprise the synthesis of high purity, monazite and xenotime powders with the stoichiometric ratio of metal to phosphorous of about 1:1.
    Type: Application
    Filed: November 19, 2003
    Publication date: June 10, 2004
    Inventors: Janet B. Davis, David B. Marshall, Peter Ernest David Morgan, Kris Shigeko Oka
  • Patent number: 6716407
    Abstract: Monazite or xenotime-based blanket coatings that stiffen ceramic fabrics without causing embrittlement at temperatures of at least as high as 2400° F. are provided. Methods for making the coatings are also provided. The methods comprise the synthesis of high purity, monazite and xenotime powders with the stoichiometric ratio of metal to phosphorous of about 1:1.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: April 6, 2004
    Assignee: The Boeing Company
    Inventors: Janet B. Davis, David B. Marshall, Peter Ernest David Morgan, Kris Shigeko Oka