Patents by Inventor David B. Upham

David B. Upham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030210909
    Abstract: A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels and electrical low-speed channels. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical low-speed channels through the use of frequency division multiplexing and preferably also QAM modulation. The ADM crosspoint couples incoming low-speed channels to outgoing low-speed channels, thus implementing the ADM functionality for the FDM node.
    Type: Application
    Filed: March 4, 2003
    Publication date: November 13, 2003
    Inventors: Michael W. Rowan, David B. Upham, Augustus Elmer, Laurence J. Newell, David A. Pechner, Abraham Kou, James F. Coward, Norman L. Swenson, Minnie Ho, Peter H. Chang, Ting K. Yee, Stuart E. Wilson
  • Patent number: 6624766
    Abstract: Return-to-zero (RZ) formatted data is recovered and transmitted using non-return-to-zero (NRZ) devices. A NRZ clock and data recovery device (CDR) interprets the clock rate of a RZ formatted signal as twice its actual clock rate. Due to this interpretation, extra zeroes will be inserted in the data stream. The extra zeroes introduced by the NRZ interpretation of the data are discarded, and the interpreted clock rate is divided resulting in preserving the values of the original data stream of the RZ formatted signal. A NRZ encoded data stream at a specific clock rate is processed so that when the data stream is transmitted to a recipient expecting RZ formatted data, the recipient interprets the correct data.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: September 23, 2003
    Assignee: Kestrel Solutions, Inc.
    Inventors: Nicholas J. Possley, David B. Upham
  • Patent number: 6529303
    Abstract: A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels and electrical low-speed channels. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical low-speed channels through the use of frequency division multiplexing and preferably also QAM modulation. The ADM crosspoint couples incoming low-speed channels to outgoing low-speed channels, thus implementing the ADM functionality for the FDM node.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: March 4, 2003
    Assignee: Kestrel Solutions, Inc.
    Inventors: Michael W. Rowan, David B. Upham, Augustus Elmer, Laurence J. Newell, David A. Pechner, Abraham Kou, James F. Coward, Norman L. Swenson, Minnie Ho, Peter H. Chang, Ting K. Yee, Stuart E. Wilson
  • Patent number: 6452945
    Abstract: A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels, and low-speed tributaries. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical, low-speed channels through the use of frequency division multiplexing. The ADM crosspoint couples any incoming low-speed channels and any incoming tributaries to any outgoing low-speed channels and tributaries, thus implementing the ADM functionality for the FDM node.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: September 17, 2002
    Assignee: Kestrel Solutions, Inc.
    Inventors: David B. Upham, Augustus Elmer, Laurence J. Newell, David A. Pechner, Abraham Kou, Michael W. Rowan, James F. Coward, Norman L. Swenson, Minnie Ho
  • Publication number: 20020039211
    Abstract: In an optical communication network, a variable rate or non-uniform input rate signal is converted to a “pseudo” signal comprising a uniform or standard data rate for the optical communication system. At the receiver, the original non-uniform rate signal is recovered.
    Type: Application
    Filed: May 8, 2001
    Publication date: April 4, 2002
    Inventors: Tian Shen, Robert B. Clarke, Thomas J. Roman, David B. Upham, David A. Pechner, Laurence J. Newell
  • Publication number: 20020024694
    Abstract: Overhead information is transmitted from a first node to a second node in an optical fiber communications system using a separate frequency band. A control channel containing the overhead information is frequency division multiplexed with electrical low-speed channels to form an electrical high-speed channel, which is converted from electrical to optical form to form an optical high-speed channel. The optical high-speed channel is transmitted over the optical fiber to the second node. In one embodiment, the control channel has a narrow bandwidth and/or is located at lower frequencies than the electrical low-speed channels, thus making the control channel more robust to impairments in the optical fiber.
    Type: Application
    Filed: May 11, 2001
    Publication date: February 28, 2002
    Inventors: Laurence J. Newell, David A. Pechner, Augustus Elmer, David B. Upham
  • Patent number: RE41517
    Abstract: Return-to-zero (RZ) formatted data is recovered and transmitted using non-return-to-zero (NRZ) devices. A NRZ clock and data recovery device (CDR) interprets the clock rate of a RZ formatted signal as twice its actual clock rate. Due to this interpretation, extra zeroes will be inserted in the data stream. The extra zeroes introduced by the NRZ interpretation of the data are discarded, and the interpreted clock rate is divided resulting in preserving the values of the original data stream of the RZ formatted signal. A NRZ encoded data stream at a specific clock rate is processed so that when the data stream is transmitted to a recipient expecting RZ formatted data, the recipient interprets the correct data.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: August 17, 2010
    Inventors: Nicholas Possley, David B. Upham