Patents by Inventor David Bakker
David Bakker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11862038Abstract: In some embodiments, a computer-implemented method for measuring motion values associated with movements of an object as the objects drives along a track comprises: receiving, using a wireless network transceiver, experiment instructions for performing an experiment; generating, based on the experiment instructions, driving instructions for causing the object to drive along the track; executing the driving instructions to cause the object to drive along the track; as the object is driving along the track: receiving, from one or more sensors, motion values associated with the movements of the object as the object drives along the track; transmitting, using the wireless network transceiver, the motion values associated with the movements of the object to one or more user devices to cause a user device, from the one or more user devices, to generate and display a graphical representation of the motion values on a display device of the user device.Type: GrantFiled: August 17, 2021Date of Patent: January 2, 2024Assignee: MYRIAD SENSORS, INC.Inventors: Clifton Roozeboom, David Bakker, John Litzenberger, Robert Douthitt, John Bower
-
Patent number: 11763693Abstract: In some embodiments, a computer system comprises processors, a request manager coupled to the processors and configured to receive practice test requests, a practice test manager configured to retrieve practice test data, a real time session manager configured to establish a real time session with a user computer, an AI-based analyzer configured to execute a machine learning model to determine accuracy of results received from the user computer, a non-transitory computer-readable storage medium storing sequences of instructions for: receiving, using the request manager, a request for performing a practice test; retrieving, using the practice test manager, data for the practice test; using the real time session manager: establishing a real time session with the user computer to enable the user computer to access the data and execute the practice test; and as the practice test is executed, collecting test results and transmitting them to user devices.Type: GrantFiled: August 17, 2021Date of Patent: September 19, 2023Assignee: Myriad Sensors, Inc.Inventors: Clifton Roozeboom, David Bakker, Robert Douthitt, John Bower, Corin Dubie
-
Publication number: 20230058032Abstract: In some embodiments, a computer-implemented method for measuring motion values associated with movements of an object as the objects drives along a track comprises: receiving, using a wireless network transceiver, experiment instructions for performing an experiment; generating, based on the experiment instructions, driving instructions for causing the object to drive along the track; executing the driving instructions to cause the object to drive along the track; as the object is driving along the track: receiving, from one or more sensors, motion values associated with the movements of the object as the object drives along the track; transmitting, using the wireless network transceiver, the motion values associated with the movements of the object to one or more user devices to cause a user device, from the one or more user devices, to generate and display a graphical representation of the motion values on a display device of the user device.Type: ApplicationFiled: August 17, 2021Publication date: February 23, 2023Inventors: CLIFTON ROOZEBOOM, DAVID BAKKER, JOHN LITZENBERGER, ROBERT DOUTHITT, JOHN BOWER
-
Publication number: 20230054427Abstract: In some embodiments, a computer system comprises processors, a request manager coupled to the processors and configured to receive practice test requests, a practice test manager configured to retrieve practice test data, a real time session manager configured to establish a real time session with a user computer, an AI-based analyzer configured to execute a machine learning model to determine accuracy of results received from the user computer, a non-transitory computer-readable storage medium storing sequences of instructions for: receiving, using the request manager, a request for performing a practice test; retrieving, using the practice test manager, data for the practice test; using the real time session manager: establishing a real time session with the user computer to enable the user computer to access the data and execute the practice test; and as the practice test is executed, collecting test results and transmitting them to user devices.Type: ApplicationFiled: August 17, 2021Publication date: February 23, 2023Inventors: CLIFTON ROOZEBOOM, DAVID BAKKER, ROBERT DOUTHITT, JOHN BOWER, CORIN DUBIE
-
Patent number: 10972635Abstract: Techniques are provided to implement the display of synchronized sensor data and captured video signal. A mobile computing device receives a set of data points from a multi-sensor device. The set of data points may be assigned a timestamp value, obtained from an internal clock within the mobile computing device. Sets of data points and their assigned timestamp values are aggregated into an aggregated sensor dataset that represents the sets of data points over a particular period of time. Concurrently to receiving the sensor data, video frames are received. The video frames with an assigned timestamp value are stored in a video frame dataset that represents video frames over a particular period of time. The aggregated sensor dataset and the video frame dataset are synchronized and combined into a single combined video dataset based upon the assigned timestamp values of the sets of data points and the video frames.Type: GrantFiled: August 30, 2018Date of Patent: April 6, 2021Assignee: MYRIAD SENSORS, INC.Inventors: Clifton Roozeboom, Andrew Bellay, David Bakker
-
Patent number: 10690493Abstract: A computer system comprises a sensor device configured to attach to a rotating object. The sensor device has a gyroscopic sensor that is configured to measure rotational motion on one or more planes. The sensor device detects rotational movement and generates and transmits signals that represent the rotational movement detected to a mobile computing device. The mobile computing device receives the signals and assigns timestamp values to the signals. The mobile computing device also receives object parameter information that describes object attributes. The mobile computing device generates angular velocity datasets and object datasets that describe motion or positions of the object. The mobile computing device then generates sets of graphical representations from the object datasets and displays graphs from the sets of graphical representations, where each graph displayed is obtained from a distinct set of graphical representations.Type: GrantFiled: August 18, 2017Date of Patent: June 23, 2020Assignee: Myriad Sensors, Inc.Inventors: Clifton Roozeboom, David Bakker, Andrew Bellay
-
Publication number: 20190007584Abstract: Techniques are provided to implement the display of synchronized sensor data and captured video signal. A mobile computing device receives a set of data points from a multi-sensor device. The set of data points may be assigned a timestamp value, obtained from an internal clock within the mobile computing device. Sets of data points and their assigned timestamp values are aggregated into an aggregated sensor dataset that represents the sets of data points over a particular period of time. Concurrently to receiving the sensor data, video frames are received. The video frames with an assigned timestamp value are stored in a video frame dataset that represents video frames over a particular period of time. The aggregated sensor dataset and the video frame dataset are synchronized and combined into a single combined video dataset based upon the assigned timestamp values of the sets of data points and the video frames.Type: ApplicationFiled: August 30, 2018Publication date: January 3, 2019Inventors: Clifton Roozeboom, Andrew Bellay, David Bakker
-
Patent number: 10075623Abstract: Techniques are provided to implement the display of synchronized sensor data and captured video signal. A mobile computing device receives a set of data points from a multi-sensor device. The set of data points may be assigned a timestamp value, obtained from an internal clock within the mobile computing device. Sets of data points and their assigned timestamp values are aggregated into an aggregated sensor dataset that represents the sets of data points over a particular period of time. Concurrent to receiving the sensor data, video frames are received. The video frames with an assigned timestamp value are stored in a video frame dataset that represents video frames over a particular period of time. The aggregated sensor dataset and the video frame dataset are synchronized and combined into a single combined video dataset based upon the assigned timestamp values of the sets of data points and the video frames.Type: GrantFiled: March 30, 2016Date of Patent: September 11, 2018Assignee: Myriad Sensors, Inc.Inventors: Clifton Roozeboom, Andrew Bellay, David Bakker
-
Publication number: 20180051985Abstract: A computer system comprises a sensor device configured to attach to a rotating object. The sensor device has a gyroscopic sensor that is configured to measure rotational motion on one or more planes. The sensor device detects rotational movement and generates and transmits signals that represent the rotational movement detected to a mobile computing device. The mobile computing device receives the signals and assigns timestamp values to the signals. The mobile computing device also receives object parameter information that describes object attributes. The mobile computing device generates angular velocity datasets and object datasets that describe motion or positions of the object. The mobile computing device then generates sets of graphical representations from the object datasets and displays graphs from the sets of graphical representations, where each graph displayed is obtained from a distinct set of graphical representations.Type: ApplicationFiled: August 18, 2017Publication date: February 22, 2018Inventors: Clifton Roozeboom, David Bakker, Andrew Bellay
-
Publication number: 20160295078Abstract: Techniques are provided to implement the display of synchronized sensor data and captured video signal. A mobile computing device receives a set of data points from a multi-sensor device. The set of data points may be assigned a timestamp value, obtained from an internal clock within the mobile computing device. Sets of data points and their assigned timestamp values are aggregated into an aggregated sensor dataset that represents the sets of data points over a particular period of time. Concurrent to receiving the sensor data, video frames are received. The video frames with an assigned timestamp value are stored in a video frame dataset that represents video frames over a particular period of time. The aggregated sensor dataset and the video frame dataset are synchronized and combined into a single combined video dataset based upon the assigned timestamp values of the sets of data points and the video frames.Type: ApplicationFiled: March 30, 2016Publication date: October 6, 2016Inventors: Clifton Roozeboom, Andrew Bellay, David Bakker
-
Publication number: 20160171909Abstract: An apparatus for a transportable toy system is provided. A transportable toy system comprising a toy body, a cavity within the toy body, and a sensor package within the cavity of the toy body. The sensor package comprises one or more processors, a plurality of electronic digital sensors coupled to the one or more processors, a wireless networking transceiver coupled to the one or more processors, and non-transitory computer-readable storage medium coupled to the one or more processors and storing one or more sequences of instructions. The sensor package is removable from the cavity of the toy and if removed utility of the toy is maintained. The sensors in the sensor package may be an accelerometer, an altimeter, a gyroscope, and/or other sensors. The instructions stored on the non-transitory computer-readable storage medium cause the one or more processors to detect a set of changes, based on readings from the sensors, to the toy in response to a change in position of the toy.Type: ApplicationFiled: December 11, 2015Publication date: June 16, 2016Inventors: CLIFTON ROOZEBOOM, Adrian Albert, David Bakker
-
Patent number: 6999614Abstract: A method and system that optionally allows a user to view image defects organized by natural groupings based on features of the images. The natural groupings make it easier for the user to organize some or all of the images into classes in a training set of images. A feature vector is extracted from each image in the training set and stored, along with its user-specified class, for use by an automatic classifier software module. The automatic classifier uses the stored feature vectors and classes to automatically classify images not in the training set. If the automatically classified images do not match images manually classified by the user, the user modifies the training set until a better result is obtained from the automatic classifier. The system can provide feedback to an inspection system designed to aid in the setup and fine-tuning of the inspection system.Type: GrantFiled: November 28, 2000Date of Patent: February 14, 2006Assignee: KLA-Tencor CorporationInventors: David Bakker, Saibal Banerjee, Ian R. Smith
-
Publication number: 20050033528Abstract: Methods and apparatus for efficiently analyzing defects in-line on a wafer by wafer basis are provided. In general terms, embodiments of the present invention provide a simple interface for setting up the entire inspection and defect analysis process in a single set up procedure. In one embodiment, an apparatus for analyzing defects on specimens is disclosed. The apparatus includes an inspection station for inspecting a specimen for potential defects and a review station for analyzing a sample of the potential defects to determine a classification of such potential defects. The apparatus further includes a computer system having an application interface operable to allow a user to set up the inspection station and the review station during a same setup phase so as to allow the inspection station and the review station to then operate automatically to provide defect information for one or more specimens based on the user set up. Techniques for using such apparatus are also disclosed.Type: ApplicationFiled: November 10, 2003Publication date: February 10, 2005Inventors: Gabor Toth, David Bakker