Patents by Inventor David Bikard

David Bikard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12285466
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 29, 2025
    Assignee: The Rockefeller University
    Inventors: David Bikard, Luciano Marraffini
  • Patent number: 12285467
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: April 29, 2025
    Assignee: The Rockfeller University
    Inventors: David Bikard, Luciano Marraffini
  • Patent number: 12246061
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: January 29, 2024
    Date of Patent: March 11, 2025
    Assignee: The Rockefeller University
    Inventors: David Bikard, Luciano Marraffini
  • Patent number: 12214022
    Abstract: The invention relates to the improvement of endonuclease-based antimicrobials by blocking DNA repair of double-strand break(s) (DSB(s)) in prokaryotic cells. In this respect, the invention especially concerns a method involving blocking DNA repair after a nucleic acid has been submitted to DSB, in particular by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated programmable double-strand endonuclease. The invention particularly relates to the use of an exogenous molecule that inhibits DNA repair, preferably a protein that binds to the ends of the double-stranded break to block DSB repair. The invention also relates to vectors, particularly phagemids and plasmids, comprising nucleic acids encoding nucleases and Gam proteins, and a pharmaceutical composition and a product containing these vectors and their application.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: February 4, 2025
    Assignees: INSTITUT PASTEUR, ELIGO BIOSCIENCE
    Inventors: David Bikard, Lun Cui, Xavier Duportet, Jesus Fernandez Rodriguez
  • Patent number: 12168040
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: December 17, 2024
    Assignee: The Rockefeller University
    Inventors: David Bikard, Luciano Marraffini
  • Publication number: 20240218380
    Abstract: The present invention relates to a vector, preferably included in a delivery vehicle, comprising no more than 100, preferably no more than 10, restriction sites recognized by the restriction enzymes encoded by each bacterium of a group of bacteria of interest. The invention also relates to the use of said vector, preferably included in a delivery vehicle, as a drug, especially in the treatment of a disease in a patient in need thereof.
    Type: Application
    Filed: February 21, 2024
    Publication date: July 4, 2024
    Inventors: Antoine Decrulle, Jesus Fernandez Rodriguez, Xavier Duportet, David Bikard
  • Publication number: 20240182886
    Abstract: Provided are methods comprising expressing in a recombinant cell a recombinant error-prone reverse transcriptase (RT) and recombinant spacer RNA comprising a target sequence; making a mutagenized cDNA polynucleotide homologous to a DNA sequence in the recombinant cell; expressing a recombinant recombineering system in the recombinant cell; and recombining the mutagenized cDNA with the homologous DNA sequence in the recombinant cell. Also provided are recombinant cells comprising recombinant coding sequences for a recombinant error-prone reverse transcriptase (RT), recombinant spacer RNA comprising a target sequence, and recombinant recombineering system.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 6, 2024
    Inventors: David BIKARD, Raphael LAURENCEAU, William ROSTAIN
  • Publication number: 20240165210
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Application
    Filed: January 29, 2024
    Publication date: May 23, 2024
    Inventors: David Bikard, Luciano Marraffini
  • Patent number: 11946056
    Abstract: The present invention relates to a vector, preferably included in a delivery vehicle, comprising no more than 100, preferably no more than 10, restriction sites recognized by the restriction enzymes encoded by each bacterium of a group of bacteria of interest. The invention also relates to the use of said vector, preferably included in a delivery vehicle, as a drug, especially in the treatment of a disease in a patient in need thereof.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: April 2, 2024
    Assignees: ELIGO BIOSCIENCE, INSTITUT PASTEUR
    Inventors: Antoine Decrulle, Jesus Fernandez Rodriguez, Xavier Duportet, David Bikard
  • Patent number: 11918631
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 5, 2024
    Assignee: THE ROCKEFELLER UNIVERSITY
    Inventors: David Bikard, Luciano Marraffini
  • Patent number: 11905516
    Abstract: The present invention relates to a vector, preferably included in a delivery vehicle, comprising no more than (100), preferably no more than (10), restriction sites recognized by the restriction enzymes encoded by each bacterium of a group of bacteria of interest. The invention also relates to the use of said vector, preferably included in a delivery vehicle, as a drug, especially in the treatment of a disease in a patient in need thereof.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: February 20, 2024
    Assignees: ELIGO BIOSCIENCE, INSTITUT PASTEUR
    Inventors: Antoine Decrulle, Jesus Fernandez Rodriguez, Xavier Duportet, David Bikard
  • Patent number: 11725183
    Abstract: The present invention relates to an in vitro method of culturing a segmented filamentous bacterium strain, comprising co-culturing said segmented filamentous bacterium strain with a eukaryotic host cell, wherein the culture is performed at an O2 level inferior to 5% in a rich tissue culture liquid medium containing bacterial medium components including iron. The present invention also relates to methods for genetically modifying a segmented filamentous bacterium strain comprising a step a culturing the strain in vitro.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 15, 2023
    Assignees: INSTITUT PASTEUR, FONDATION IMAGINE, ASSISTANCE PUBLIQUE—HOPITAUX DE PARIS, UNIVERSITE PARIS CITE, INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)
    Inventors: Gerard Eberl, David Bikard, Pamela Schnupf, Nadine Cerf Bensussan, Valerie Gaboriau-Routhiau, Philippe Sansonetti
  • Patent number: 11497797
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: November 15, 2022
    Assignee: The Rockfeller University
    Inventors: David Bikard, Luciano Marraffini
  • Patent number: 11491209
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: November 8, 2022
    Assignee: The Rockefeller University
    Inventors: David Bikard, Luciano Marraffini
  • Patent number: 11491210
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: November 8, 2022
    Assignee: The Rockefeller University
    Inventors: David Bikard, Luciano Marraffini
  • Publication number: 20220347271
    Abstract: The invention relates to the improvement of endonuclease-based antimicrobials by blocking DNA repair of double-strand break(s) (DSB(s)) in prokaryotic cells. In this respect, the invention especially concerns a method involving blocking DNA repair after a nucleic acid has been submitted to DSB, in particular by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated programmable double-strand endonuclease. The invention particularly relates to the use of an exogenous molecule that inhibits DNA repair, preferably a protein that binds to the ends of the double-stranded break to block DSB repair. The invention also relates to vectors, particularly phagemids and plasmids, comprising nucleic acids encoding nucleases and Gam proteins, and a pharmaceutical composition and a product containing these vectors and their application.
    Type: Application
    Filed: June 3, 2022
    Publication date: November 3, 2022
    Inventors: David BIKARD, Lun CUI, Xavier DUPORTET, Jesus FERNANDEZ RODRIGUEZ
  • Patent number: 11452765
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: September 27, 2022
    Assignee: The Rockefeller University
    Inventors: David Bikard, Luciano Marraffini
  • Publication number: 20220218795
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: David Bikard, Luciano Marraffini
  • Publication number: 20220218797
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: David Bikard, Luciano Marraffini
  • Publication number: 20220218796
    Abstract: Provided are compositions and methods for selectively reducing the amount of antibiotic resistant and/or virulent bacteria in a mixed bacteria population, or for reducing any other type of unwanted bacteria in a mixed bacteria population. The compositions and methods involve targeting bacteria that are differentiated from other members of the population by at least one unique clustered regularly interspaced short palindromic repeats (CRISPR) targeted DNA sequence. The compositions and methods can be readily adapted to target any bacteria or any bacteria plasmid, or both.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: David Bikard, Luciano Marraffini