Patents by Inventor David Bjorn Roe

David Bjorn Roe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240286288
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot includes a drive system configured to move the telepresence robot; a control system configured to control the drive system to drive the telepresence robot around a work area; an object detection system configured to determine that a first object encountered by the telepresence robot is a human; and a social path component configured to: determine a first lockout zone having a first radius around the human and a first comfort zone having a second radius around the human, the second radius being larger than the first radius; and instruct the control system to cause the telepresence robot to: avoid traveling through the first lockout zone; move at a first maximum speed within the first comfort zone; and move at a second maximum speed outside of the first comfort zone, wherein the second maximum speed is greater than the first maximum speed.
    Type: Application
    Filed: May 3, 2024
    Publication date: August 29, 2024
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 11981034
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: May 14, 2024
    Assignees: TELADOC HEALTH, INC., IROBOT CORPORATION
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20230226694
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 20, 2023
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 11628571
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 18, 2023
    Assignees: TELADOC HEALTH, INC., IROBOT CORPORATION
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20220250233
    Abstract: A robot system that includes a remote control station and a robot that has a camera, a monitor and a microphone. The robot includes a user interface that allows a user to link the remote control station to access the robot. By way of example, the user interface may include a list of remote control stations that can be selected by a user at the robot site to link the robot to the selected control station. The user interface can display a connectivity prompt that allows a user at the robot site to grant access to the robot. The connectivity prompt is generated in response to a request for access by a remote control station. The robot may include a laser pointer and a button that allows a user at the robot site to turn the laser pointer on and off.
    Type: Application
    Filed: October 25, 2021
    Publication date: August 11, 2022
    Inventors: Kevin Hanrahan, Marco Pinter, Daniel Steven Sanchez, Blair Whitney, David Bjorn Roe, Charles S. Jordan, Yulun Wang
  • Publication number: 20210365006
    Abstract: A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
    Type: Application
    Filed: April 5, 2021
    Publication date: November 25, 2021
    Inventors: Yulun Wang, Marco Pinter, Kevin Hanrahan, Daniel Steven Sanchez, Charles S. Jordan, David Bjorn Roe, James Rosenthal, Derek Walters
  • Patent number: 11154981
    Abstract: A robot system that includes a remote control station and a robot that has a camera, a monitor and a microphone. The robot includes a user interface that allows a user to link the remote control station to access the robot. By way of example, the user interface may include a list of remote control stations that can be selected by a user at the robot site to link the robot to the selected control station. The user interface can display a connectivity prompt that allows a user at the robot site to grant access to the robot. The connectivity prompt is generated in response to a request for access by a remote control station. The robot may include a laser pointer and a button that allows a user at the robot site to turn the laser pointer on and off.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: October 26, 2021
    Assignee: TELADOC HEALTH, INC.
    Inventors: Kevin Hanrahan, Marco Pinter, Daniel Steven Sanchez, Blair Whitney, David Bjorn Roe, Charles S. Jordan, Yulun Wang
  • Patent number: 10969766
    Abstract: A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: April 6, 2021
    Assignee: Teladoc Health, Inc.
    Inventors: Yulun Wang, Marco Pinter, Kevin Hanrahan, Daniel Steven Sanchez, Charles S. Jordan, David Bjorn Roe, James Rosenthal, Derek Walters
  • Publication number: 20210008722
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 14, 2021
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 10780582
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: September 22, 2020
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20200009736
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Application
    Filed: May 21, 2019
    Publication date: January 9, 2020
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 10328576
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: June 25, 2019
    Assignee: InTouch Technologies, Inc.
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20180275638
    Abstract: A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Yulun Wang, Marco Pinter, Kevin Hanrahan, Daniel Steven Sanchez, Charles S. Jordan, David Bjorn Roe, James Rosenthal, Derek Walters
  • Patent number: 9983571
    Abstract: A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: May 29, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Marco Pinter, Kevin Hanrahan, Daniel Steven Sanchez, Charles S. Jordan, David Bjorn Roe, James Rosenthal, Derek Walters
  • Publication number: 20180099412
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 12, 2018
    Applicant: iRobot Corporation
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 9776327
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: October 3, 2017
    Assignees: INTOUCH TECHNOLOGIES, INC., IROBOT CORPORATION
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20170200450
    Abstract: A system and method of operating an automatic speech recognition application over an Internet Protocol network is disclosed. The ASR application communicates over a packet network such as an Internet Protocol network or a wireless network. A grammar for recognizing received speech from a user over the IP network is selected from a plurality of grammars according to a user-selected application. A server receives information representing speech over the IP network, performs speech recognition using the selected grammar, and returns information based upon the recognized speech. Sub-grammars may be included within the grammar to recognize speech from sub-portions of a dialog with the user.
    Type: Application
    Filed: June 19, 2015
    Publication date: July 13, 2017
    Inventors: Pamela Leigh Dragosh, David Bjorn Roe, Robert Douglas Sharp
  • Patent number: 9616576
    Abstract: A remote controlled robot system that includes a robot and a remote control station. The robot includes a binaural microphone system that is coupled to a speaker system of the remote control station. The binaural microphone system may include a pair of microphones located at opposite sides of a robot head. the location of the microphones roughly coincides with the location of ears on a human body. Such microphone location creates a mobile robot that more effectively simulates the tele-presence of an operator of the system. The robot may include two different microphone systems and the ability to switch between systems. For example, the robot may also include a zoom camera system and a directional microphone. The directional microphone may be utilized to capture sound from a direction that corresponds to an object zoomed upon by the camera system.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: April 11, 2017
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: David Bjorn Roe, Daniel Steven Sanchez, Marco Pinter, Derek Walters, Charles S. Jordan
  • Publication number: 20160229058
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Application
    Filed: November 3, 2015
    Publication date: August 11, 2016
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 9174342
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: November 3, 2015
    Assignees: INTOUCH TECHNOLOGIES, INC., IROBOT CORPORATION
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong