Patents by Inventor David Brett Cain
David Brett Cain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210085480Abstract: An orthopedic implant which generally includes a frame structure and a porous structure. Both the frame and porous structure at least partially define at least six surfaces which make a three-dimensional profile of the implant. The porous structure is positioned at least partially within the three-dimensional profile.Type: ApplicationFiled: June 5, 2020Publication date: March 25, 2021Inventors: David Brett Cain, Jay Yadav, Noah Roth
-
Publication number: 20210085481Abstract: An orthopedic implant which generally includes a frame structure and a porous structure. Both the frame and porous structure at least partially define at least six surfaces which make a three-dimensional profile of the implant. The porous structure is positioned at least partially within the three-dimensional profile.Type: ApplicationFiled: July 29, 2020Publication date: March 25, 2021Inventors: David Brett Cain, Noah Roth, Jay Yadav
-
Patent number: 10893895Abstract: A screw extension assembly for use in minimally invasive spinal surgery, the assembly has an inner slotted shaft and an outer shaft, a rod reducer and a removable nut. The combination when assembled is configured to move a spinal fixation rod into a slotted rod receiving spinal implant where it is seated and affixed thereto. The screw extension assembly further has a locking knob rotationally coupled to a proximal end of the outer shaft, wherein the inner shaft has one or more cam grooves and the locking knob has a pin extending into and guided by said cam groove causing the outer shaft to translate longitudinally upon rotation of the locking knob relative to the inner shaft toward an engaged position locking the deflectable legs in the coupled position to the slotted rod receiving implant.Type: GrantFiled: August 1, 2018Date of Patent: January 19, 2021Assignee: Spinal Elements, Inc.Inventors: Joshua David Gunn, David Brett Cain
-
Publication number: 20200323567Abstract: A clip-on reducer tool assembly for seating a spinal fixation rod in a rod receiving implant, the tool assembly has an outer sleeve. The outer sleeve has a proximal end with a cylindrical portion having a threaded opening, a first leg extension extending therefrom to a distal end, and a second leg extension joined to the first leg extension at an intermediate location between the distal end and proximal end. The second leg extension extends from the distal end toward the proximal end to a lever end spaced from the cylindrical portion. The leg extensions at the distal end have grasping members to engage an outer surface of a rod receiving implant and a fulcrum proximally located near the intermediate location configured to enlarge the space between the leg extension at the distal end as the lever end is depressed inwardly relative to a longitudinal axis of the outer sleeve.Type: ApplicationFiled: June 30, 2020Publication date: October 15, 2020Inventors: David Brett Cain, Joshua David Gunn
-
Patent number: 10729477Abstract: A clip-on reducer tool assembly for seating a spinal fixation rod in a rod receiving implant, the tool assembly has an outer sleeve. The outer sleeve has a proximal end with a cylindrical portion having a threaded opening, a first leg extension extending therefrom to a distal end, and a second leg extension joined to the first leg extension at an intermediate location between the distal end and proximal end. The second leg extension extends from the distal end toward the proximal end to a lever end spaced from the cylindrical portion. The leg extensions at the distal end have grasping members to engage an outer surface of a rod receiving implant and a fulcrum proximally located near the intermediate location configured to enlarge the space between the leg extension at the distal end as the lever end is depressed inwardly relative to a longitudinal axis of the outer sleeve.Type: GrantFiled: August 22, 2018Date of Patent: August 4, 2020Inventors: David Brett Cain, Joshua David Gunn
-
Patent number: 10485594Abstract: A modular tulip assembly has a rod receiving tulip and a saddle. The saddle is interlockingly held inside a distal portion of the tulip. The saddle has an external locking groove or recess. The tulip has a locking projection. The locking projection is positioned into the external locking groove or recess and holds the saddle in a pre-loaded unlocked state ready to be pushed onto a head of an implanted bone screw. Upon receiving the head of the bone screw, the saddle can be moved distally relative to the tulip to a locked state by moving the locking groove or recess distally past the locking projection to where the proximal end of the saddle is past abutting the locking projection.Type: GrantFiled: October 4, 2016Date of Patent: November 26, 2019Inventors: Geoffrey Toon, David Brett Cain, Joshua David Gunn
-
Publication number: 20180360504Abstract: A clip-on reducer tool assembly for seating a spinal fixation rod in a rod receiving implant, the tool assembly has an outer sleeve. The outer sleeve has a proximal end with a cylindrical portion having a threaded opening, a first leg extension extending therefrom to a distal end, and a second leg extension joined to the first leg extension at an intermediate location between the distal end and proximal end. The second leg extension extends from the distal end toward the proximal end to a lever end spaced from the cylindrical portion. The leg extensions at the distal end have grasping members to engage an outer surface of a rod receiving implant and a fulcrum proximally located near the intermediate location configured to enlarge the space between the leg extension at the distal end as the lever end is depressed inwardly relative to a longitudinal axis of the outer sleeve.Type: ApplicationFiled: August 22, 2018Publication date: December 20, 2018Inventors: David Brett Cain, Joshua David Gunn
-
Publication number: 20180338781Abstract: A screw extension assembly for use in minimally invasive spinal surgery, the assembly has an inner slotted shaft and an outer shaft, a rod reducer and a removable nut. The combination when assembled is configured to move a spinal fixation rod into a slotted rod receiving spinal implant where it is seated and affixed thereto. The screw extension assembly further has a locking knob rotationally coupled to a proximal end of the outer shaft, wherein the inner shaft has one or more cam grooves and the locking knob has a pin extending into and guided by said cam groove causing the outer shaft to translate longitudinally upon rotation of the locking knob relative to the inner shaft toward an engaged position locking the deflectable legs in the coupled position to the slotted rod receiving implant.Type: ApplicationFiled: August 1, 2018Publication date: November 29, 2018Inventors: Joshua David Gunn, David Brett Cain
-
Patent number: 10080594Abstract: A clip-on reducer tool assembly for seating a spinal fixation rod in a rod receiving implant, the tool assembly has an outer sleeve. The outer sleeve has a proximal end with a cylindrical portion having a threaded opening, a first leg extension extending therefrom to a distal end, and a second leg extension joined to the first leg extension at an intermediate location between the distal end and proximal end. The second leg extension extends from the distal end toward the proximal end to a lever end spaced from the cylindrical portion. The leg extensions at the distal end have grasping members to engage an outer surface of a rod receiving implant and a fulcrum proximally located near the intermediate location configured to enlarge the space between the leg extension at the distal end as the lever end is depressed inwardly relative to a longitudinal axis of the outer sleeve.Type: GrantFiled: August 5, 2016Date of Patent: September 25, 2018Assignee: Amendia, Inc.Inventors: David Brett Cain, Joshua David Gunn
-
Patent number: 10064662Abstract: A screw extension assembly for use in minimally invasive spinal surgery, the assembly has an inner slotted shaft and an outer shaft, a rod reducer and a removable nut. The combination when assembled is configured to move a spinal fixation rod into a slotted rod receiving spinal implant where it is seated and affixed thereto. The screw extension assembly further has a locking knob rotationally coupled to a proximal end of the outer shaft, wherein the inner shaft has one or more cam grooves and the locking knob has a pin extending into and guided by said cam groove causing the outer shaft to translate longitudinally upon rotation of the locking knob relative to the inner shaft toward an engaged position locking the deflectable legs in the coupled position to the slotted rod receiving implant.Type: GrantFiled: August 12, 2016Date of Patent: September 4, 2018Assignee: Amendia, Inc.Inventors: Joshua David Gunn, David Brett Cain
-
Publication number: 20180092678Abstract: A modular tulip assembly has a rod receiving tulip and a saddle. The saddle is interlockingly held inside a distal portion of the tulip. The saddle has an external locking groove or recess. The tulip has a locking projection. The locking projection is positioned into the external locking groove or recess and holds the saddle in a pre-loaded unlocked state ready to be pushed onto a head of an implanted bone screw. Upon receiving the head of the bone screw, the saddle can be moved distally relative to the tulip to a locked state by moving the locking groove or recess distally past the locking projection to where the proximal end of the saddle is past abutting the locking projection.Type: ApplicationFiled: October 4, 2016Publication date: April 5, 2018Applicant: Amendia, Inc.Inventors: Geoffrey Toon, David Brett Cain, Joshua David Gunn
-
Publication number: 20180092679Abstract: A modular tulip assembly has a rod receiving tulip and a saddle. The saddle is interlockingly held inside a distal portion of the tulip. The saddle has a locking projection. The tulip has a pair of grooves or recesses. The locking projection is positioned into the proximal tulip groove or recess and holds the saddle in a pre-loaded unlocked state ready to be pushed onto a head of an implanted bone screw. Upon receiving the head of the bone screw, the saddle can be moved distally relative to the tulip to a locked state by moving the locking projection distally into the distal tulip locking groove or recess.Type: ApplicationFiled: May 31, 2017Publication date: April 5, 2018Applicant: Amendia, Inc.Inventors: Geoffrey Toon, David Brett Cain, Joshua David Gunn
-
Publication number: 20180042645Abstract: A screw extension assembly for use in minimally invasive spinal surgery, the assembly has an inner slotted shaft and an outer shaft, a rod reducer and a removable nut. The combination when assembled is configured to move a spinal fixation rod into a slotted rod receiving spinal implant where it is seated and affixed thereto. The screw extension assembly further has a locking knob rotationally coupled to a proximal end of the outer shaft, wherein the inner shaft has one or more cam grooves and the locking knob has a pin extending into and guided by said cam groove causing the outer shaft to translate longitudinally upon rotation of the locking knob relative to the inner shaft toward an engaged position locking the deflectable legs in the coupled position to the slotted rod receiving implant.Type: ApplicationFiled: August 12, 2016Publication date: February 15, 2018Applicant: Amendia, Inc.Inventors: Joshua David Gunn, David Brett Cain
-
Publication number: 20180036044Abstract: A clip-on reducer tool assembly for seating a spinal fixation rod in a rod receiving implant, the tool assembly has an outer sleeve. The outer sleeve has a proximal end with a cylindrical portion having a threaded opening, a first leg extension extending therefrom to a distal end, and a second leg extension joined to the first leg extension at an intermediate location between the distal end and proximal end. The second leg extension extends from the distal end toward the proximal end to a lever end spaced from the cylindrical portion. The leg extensions at the distal end have grasping members to engage an outer surface of a rod receiving implant and a fulcrum proximally located near the intermediate location configured to enlarge the space between the leg extension at the distal end as the lever end is depressed inwardly relative to a longitudinal axis of the outer sleeve.Type: ApplicationFiled: August 5, 2016Publication date: February 8, 2018Applicant: Amendia, Inc.Inventors: David Brett Cain, Joshua David Gunn
-
Patent number: 9603632Abstract: A tulip bone screw assembly has a bone screw, a tulip and a saddle. The bone screw has a threaded shank and a polyaxial head. The tulip has a slotted opening for receiving a rod and an open distal end for passing the shank of the bone screw and holding the head and a locking ring positioned between the slotted opening and the distal end. The saddle has an axis defined by a center opening, a proximal concave end for engaging and holding the rod and a distal end with a plurality of friction fingers bent inwardly toward an axis of the saddle for applying a friction force to the head of the bone screw.Type: GrantFiled: May 20, 2016Date of Patent: March 28, 2017Assignee: Amendia, Inc.Inventors: Joshua David Gunn, David Brett Cain
-
Publication number: 20170020573Abstract: A pedicle screw assembly has a bone screw, a tulip, a multi-segmented locking member and a saddle. The multi-segmented locking member is internal of the tulip positioned in a recess or undercut groove of an inner surface of the tulip. The saddle has a proximal end for engaging a rod and a distal end for receiving a head of the bone screw. The saddle has an exterior surface positioned between the ends. The outer surface is sized to move axially inside the tulip.Type: ApplicationFiled: August 7, 2015Publication date: January 26, 2017Applicant: AMENDIA, INC.Inventors: David Brett Cain, Joshua David Gunn