Patents by Inventor David Bruce Robinson

David Bruce Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220299472
    Abstract: A nanopore based sequencing chip package is disclosed. The nanopore based sequencing chip package includes a reservoir defined by a plurality of surfaces. The chip package includes a nanopore cell array comprising a plurality of nanopore sensor cells enclosed by the reservoir. Each nanopore sensor cell has a working electrode. At least one surface of the reservoir is configured to be in contact with a conducting fluid when the conducting fluid is flowing through the reservoir. The chip package further includes a counter electrode disposed on the at least one surface of the reservoir.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 22, 2022
    Inventors: J. William Maney, JR., David Bruce Robinson, Markus Wallgren, Robert A. Yuan
  • Patent number: 9803285
    Abstract: A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: October 31, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: David Bruce Robinson, Patrick J. Cappillino, Leah B. Sheridan, John L. Stickney, David M. Benson
  • Publication number: 20170284962
    Abstract: A nanopore based sequencing chip package is disclosed. The nanopore based sequencing chip package includes a reservoir defined by a plurality of surfaces. The chip package includes a nanopore cell array comprising a plurality of nanopore sensor cells enclosed by the reservoir. Each nanopore sensor cell has a working electrode. At least one surface of the reservoir is configured to be in contact with a conducting fluid when the conducting fluid is flowing through the reservoir. The chip package further includes a counter electrode disposed on the at least one surface of the reservoir.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 5, 2017
    Inventors: J. William Maney, David Bruce Robinson, Markus Wallgren, Robert A. Yuan
  • Patent number: 9658190
    Abstract: A nanopore based sequencing chip package is disclosed. The nanopore based sequencing chip package includes a reservoir defined by a plurality of surfaces. The chip package includes a nanopore cell array comprising a plurality of nanopore sensor cells enclosed by the reservoir. Each nanopore sensor cell has a working electrode. At least one surface of the reservoir is configured to be in contact with a conducting fluid when the conducting fluid is flowing through the reservoir. The chip package further includes a counter electrode disposed on the at least one surface of the reservoir.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: May 23, 2017
    Assignee: Genia Technologies, Inc.
    Inventors: Bill Maney, David Bruce Robinson, Markus Wallgren, Robert A. Yuan
  • Publication number: 20160178576
    Abstract: A nanopore based sequencing chip package is disclosed. The nanpore based sequencing chip package includes a reservoir defined by a plurality of surfaces. The chip package includes a nanopore cell array comprising a plurality of nanopore sensor cells enclosed by the reservoir. Each nanopore sensor cell has a working electrode. At least one surface of the reservoir is configured to be in contact with a conducting fluid when the conducting fluid is flowing through the reservoir. The chip package further includes a counter electrode disposed on the at least one surface of the reservoir.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Bill Maney, David Bruce Robinson, Markus Wallgren, Robert A. Yuan
  • Patent number: 8461300
    Abstract: Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: June 11, 2013
    Assignee: Sandia Corporation
    Inventors: David Bruce Robinson, Ronald Zuckermann, George M. Buffleben
  • Publication number: 20110230427
    Abstract: Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. This has been most impressive in the case of DNA, and progress has been made toward templating inorganic nanoparticles using DNA nanostructures. One obstacle to this progress is that inorganic nanomaterials are often incompatible with DNA assembly conditions, which involve aqueous solutions high in either or both monovalent and divalent salt. Synthetic oligopeptide ligands have been shown by others to improve nanoparticle stability in high concentrations of monovalent salt. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule.
    Type: Application
    Filed: January 12, 2011
    Publication date: September 22, 2011
    Inventors: David Bruce Robinson, Ronald Zuckermann, George M. Buffleben