Patents by Inventor David BUDDEN
David BUDDEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11948085Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network that is used to select actions to be performed by a reinforcement learning agent interacting with an environment. In particular, the actions are selected from a continuous action space and the system trains the action selection neural network jointly with a distribution Q network that is used to update the parameters of the action selection neural network.Type: GrantFiled: April 19, 2023Date of Patent: April 2, 2024Assignee: DeepMind Technologies LimitedInventors: David Budden, Matthew William Hoffman, Gabriel Barth-Maron
-
Patent number: 11907821Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.Type: GrantFiled: September 27, 2019Date of Patent: February 20, 2024Assignee: DeepMind Technologies LimitedInventors: Ang Li, Valentin Clement Dalibard, David Budden, Ola Spyra, Maxwell Elliot Jaderberg, Timothy James Alexander Harley, Sagi Perel, Chenjie Gu, Pramod Gupta
-
Publication number: 20240042600Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific training data for the particular task, comprising, for each experience in a second subset of the experiences in the robot experience data: processing the observation in the experience using the trained reward model to generate a reward prediction, and associating the reward prediction with the experience; and training a policy neural network on the task-specific training data for the particular task, wherein the policy neural network is configured to receive a network input comprising an observation and to generate a policy output that defines a control policy for a robot performing the particular task.Type: ApplicationFiled: June 8, 2023Publication date: February 8, 2024Inventors: Serkan Cabi, Ziyu Wang, Alexander Novikov, Ksenia Konyushkova, Sergio Gomez Colmenarejo, Scott Ellison Reed, Misha Man Ray Denil, Jonathan Karl Scholz, Oleg O. Sushkov, Rae Chan Jeong, David Barker, David Budden, Mel Vecerik, Yusuf Aytar, Joao Ferdinando Gomes de Freitas
-
Publication number: 20230409907Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network that is used to select actions to be performed by a reinforcement learning agent interacting with an environment. In particular, the actions are selected from a continuous action space and the system trains the action selection neural network jointly with a distribution Q network that is used to update the parameters of the action selection neural network.Type: ApplicationFiled: April 19, 2023Publication date: December 21, 2023Inventors: David Budden, Matthew William Hoffman, Gabriel Barth-Maron
-
Publication number: 20230252288Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network used to select actions to be performed by an agent interacting with an environment. One of the systems includes (i) a plurality of actor computing units, in which each of the actor computing units is configured to maintain a respective replica of the action selection neural network and to perform a plurality of actor operations, and (ii) one or more learner computing units, in which each of the one or more learner computing units is configured to perform a plurality of learner operations.Type: ApplicationFiled: April 6, 2023Publication date: August 10, 2023Inventors: David Budden, Gabriel Barth-Maron, John Quan, Daniel George Horgan
-
Patent number: 11712799Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific training data for the particular task, comprising, for each experience in a second subset of the experiences in the robot experience data: processing the observation in the experience using the trained reward model to generate a reward prediction, and associating the reward prediction with the experience; and training a policy neural network on the task-specific training data for the particular task, wherein the policy neural network is configured to receive a network input comprising an observation and to generate a policy output that defines a control policy for a robot performing the particular task.Type: GrantFiled: September 14, 2020Date of Patent: August 1, 2023Assignee: DeepMind Technologies LimitedInventors: Serkan Cabi, Ziyu Wang, Alexander Novikov, Ksenia Konyushkova, Sergio Gomez Colmenarejo, Scott Ellison Reed, Misha Man Ray Denil, Jonathan Karl Scholz, Oleg O. Sushkov, Rae Chan Jeong, David Barker, David Budden, Mel Vecerik, Yusuf Aytar, Joao Ferdinando Gomes de Freitas
-
Patent number: 11663475Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network that is used to select actions to be performed by a reinforcement learning agent interacting with an environment. In particular, the actions are selected from a continuous action space and the system trains the action selection neural network jointly with a distribution Q network that is used to update the parameters of the action selection neural network.Type: GrantFiled: September 15, 2022Date of Patent: May 30, 2023Assignee: DeepMind Technologies LimitedInventors: David Budden, Matthew William Hoffman, Gabriel Barth-Maron
-
Patent number: 11663441Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection policy neural network, wherein the action selection policy neural network is configured to process an observation characterizing a state of an environment to generate an action selection policy output, wherein the action selection policy output is used to select an action to be performed by an agent interacting with an environment. In one aspect, a method comprises: obtaining an observation characterizing a state of the environment subsequent to the agent performing a selected action; generating a latent representation of the observation; processing the latent representation of the observation using a discriminator neural network to generate an imitation score; determining a reward from the imitation score; and adjusting the current values of the action selection policy neural network parameters based on the reward using a reinforcement learning training technique.Type: GrantFiled: September 27, 2019Date of Patent: May 30, 2023Assignee: DeepMind Technologies LimitedInventors: Scott Ellison Reed, Yusuf Aytar, Ziyu Wang, Tom Paine, Sergio Gomez Colmenarejo, David Budden, Tobias Pfaff, Aaron Gerard Antonius van den Oord, Oriol Vinyals, Alexander Novikov
-
Patent number: 11625604Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network used to select actions to be performed by an agent interacting with an environment. One of the systems includes (i) a plurality of actor computing units, in which each of the actor computing units is configured to maintain a respective replica of the action selection neural network and to perform a plurality of actor operations, and (ii) one or more learner computing units, in which each of the one or more learner computing units is configured to perform a plurality of learner operations.Type: GrantFiled: October 29, 2018Date of Patent: April 11, 2023Assignee: DeepMind Technologies LimitedInventors: David Budden, Gabriel Barth-Maron, John Quan, Daniel George Horgan
-
Publication number: 20230079338Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-readable storage media, for training a neural network to control a real-world agent interacting with a real-world environment to cause the real-world agent to perform a particular task. One of the methods includes training the neural network to determine first values of the parameters by optimizing a first task-specific objective that measures a performance of the policy neural network in controlling a simulated version of the real-world agent; obtaining real-world data generated from interactions of the real-world agent with the real-world environment; and training the neural network to determine trained values of the parameters from the first values of the parameters by jointly optimizing (i) a self-supervised objective that measures at least a performance of internal representations generated by the neural network on a self-supervised task performed on the real-world data and (ii) a second task-specific objective.Type: ApplicationFiled: October 8, 2020Publication date: March 16, 2023Inventors: Eren Sezener, Joel William Veness, Marcus Hutter, Jianan Wang, David Budden
-
Publication number: 20230020071Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network that is used to select actions to be performed by a reinforcement learning agent interacting with an environment. In particular, the actions are selected from a continuous action space and the system trains the action selection neural network jointly with a distribution Q network that is used to update the parameters of the action selection neural network.Type: ApplicationFiled: September 15, 2022Publication date: January 19, 2023Inventors: David Budden, Matthew William Hoffman, Gabriel Barth-Maron
-
Patent number: 11481629Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network that is used to select actions to be performed by a reinforcement learning agent interacting with an environment. In particular, the actions are selected from a continuous action space and the system trains the action selection neural network jointly with a distribution Q network that is used to update the parameters of the action selection neural network.Type: GrantFiled: October 29, 2018Date of Patent: October 25, 2022Assignee: DeepMind Technologies LimitedInventors: David Budden, Matthew William Hoffman, Gabriel Barth-Maron
-
Publication number: 20220261639Abstract: A method is proposed of training a neural network to generate action data for controlling an agent to perform a task in an environment. The method includes obtaining, for each of a plurality of performances of the task, one or more first tuple datasets, each first tuple dataset comprising state data characterizing a state of the environment at a corresponding time during the performance of the task; and a concurrent process of training the neural network and a discriminator network. The training process comprises a plurality of neural network update steps and a plurality of discriminator network update steps.Type: ApplicationFiled: July 16, 2020Publication date: August 18, 2022Inventors: Konrad Zolna, Scott Ellison Reed, Ziyu Wang, Alexander Novikov, Sergio Gomez Colmenarejo, Joao Ferdinando Gomes de Freitas, David Budden, Serkan Cabi
-
Patent number: 11138744Abstract: A method for determining whether a goal is achieved by a trajectory of a ball using a mobile computer device comprises capturing a sequence of video frames of the ball with a camera of the mobile computer device; detecting the ball in at least three of the video frames; computing a trajectory of the ball using the detections of the ball; detecting a goal image in at least one of the video frames; computing whether the trajectory of the ball achieves intersection or similar with a goal plane computed from the goal image according to a goal criterion.Type: GrantFiled: November 10, 2017Date of Patent: October 5, 2021Assignee: FORMALYTICS HOLDINGS PTY LTDInventors: Andrew Hall, David Budden, Grant Etherington, Holly Ade Simpson, Tres Kani, Se Yeun Kim
-
Publication number: 20210097443Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.Type: ApplicationFiled: September 27, 2019Publication date: April 1, 2021Inventors: Ang Li, Valentin Clement Dalibard, David Budden, Ola Spyra, Maxwell Elliot Jaderberg, Timothy James Alexander Harley, Sagi Perel, Chenjie Gu, Pramod Gupta
-
Publication number: 20210078169Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific training data for the particular task, comprising, for each experience in a second subset of the experiences in the robot experience data: processing the observation in the experience using the trained reward model to generate a reward prediction, and associating the reward prediction with the experience; and training a policy neural network on the task-specific training data for the particular task, wherein the policy neural network is configured to receive a network input comprising an observation and to generate a policy output that defines a control policy for a robot performing the particular task.Type: ApplicationFiled: September 14, 2020Publication date: March 18, 2021Inventors: Serkan Cabi, Ziyu Wang, Alexander Novikov, Ksenia Konyushkova, Sergio Gomez Colmenarejo, Scott Ellison Reed, Misha Man Ray Denil, Jonathan Karl Scholz, Oleg O. Sushkov, Rae Chan Jeong, David Barker, David Budden, Mel Vecerik, Yusuf Aytar, Joao Ferdinando Gomes de Freitas
-
Publication number: 20200293883Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network that is used to select actions to be performed by a reinforcement learning agent interacting with an environment. In particular, the actions are selected from a continuous action space and the system trains the action selection neural network jointly with a distribution Q network that is used to update the parameters of the action selection neural network.Type: ApplicationFiled: October 29, 2018Publication date: September 17, 2020Inventors: David Budden, Matthew William Hoffman, Gabriel Barth-Maron
-
Publication number: 20200265305Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network used to select actions to be performed by an agent interacting with an environment. One of the systems includes (i) a plurality of actor computing units, in which each of the actor computing units is configured to maintain a respective replica of the action selection neural network and to perform a plurality of actor operations, and (ii) one or more learner computing units, in which each of the one or more learner computing units is configured to perform a plurality of learner operations.Type: ApplicationFiled: October 29, 2018Publication date: August 20, 2020Inventors: David Budden, Gabriel Barth-Maron, John Quan, Daniel George Horgan
-
Publication number: 20200104680Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection policy neural network, wherein the action selection policy neural network is configured to process an observation characterizing a state of an environment to generate an action selection policy output, wherein the action selection policy output is used to select an action to be performed by an agent interacting with an environment. In one aspect, a method comprises: obtaining an observation characterizing a state of the environment subsequent to the agent performing a selected action; generating a latent representation of the observation; processing the latent representation of the observation using a discriminator neural network to generate an imitation score; determining a reward from the imitation score; and adjusting the current values of the action selection policy neural network parameters based on the reward using a reinforcement learning training technique.Type: ApplicationFiled: September 27, 2019Publication date: April 2, 2020Inventors: Scott Ellison Reed, Yusuf Aytar, Ziyu Wang, Tom Paine, Sergio Gomez Colmenarejo, David Budden, Tobias Pfaff, Aaron Gerard Antonius van den Oord, Oriol Vinyals, Alexander Novikov
-
Patent number: 10482285Abstract: User events of a platform are processed to extract aggregate information about users of the platform at an event processing system. A query relating to the user events is received at the system and at least one query parameter is determined from the query. Various privacy controls are disclosed for ensuring that any information released in response to the query cannot be used to identify users individually or to infer information about individual users.Type: GrantFiled: July 6, 2018Date of Patent: November 19, 2019Assignee: Mediasift LimitedInventors: Lorenzo Alberton, Alistair Joseph Bastian, Timothy David Budden