Patents by Inventor David Burdick Berman

David Burdick Berman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11832898
    Abstract: Certain aspects relate to a medical system that includes a robotically controllable field generator and an instrument guide. The instrument guide may guide a percutaneously insertable instrument along an insertion axis. The instrument guide may also be positioned on an electromagnetic (EM) field generator, where the EM field generator can generate an EM field. A first robotic arm may be coupled to the EM field generator and it may move the EM field generator and the instrument guide. The system then determines: an EM target positioned within a patient, and a registration that maps positions within an EM coordinate frame associated with the EM field to positions within a robotic coordinate frame. The system may also determine, based on the registration, a position of the EM target within the robotic coordinate frame. Based on the position of the EM target within the robotic coordinate frame, move the first robotic arm may move to align the insertion axis of the instrument guide with the EM target.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: December 5, 2023
    Assignee: Auris Health, Inc.
    Inventors: Christopher Sramek, Elif Ayvali, David Burdick Berman
  • Patent number: 11832889
    Abstract: Systems and methods for electromagnetic field generator alignment are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate, when positioned in a working volume of the EM field, one or more EM sensor signals based on detection of the EM field, the EM sensor configured for placement on a patient. The system may also include a processor and a memory storing computer-executable instructions to cause the processor to: determine a position of the EM sensor with respect to the field generator based on the one or more EM sensor signals, encode a representation of the position of the EM sensor with respect to the working volume of the EM field, and provide the encoded representation of the position to a display configured to render encoded data.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 5, 2023
    Assignee: Auris Health, Inc.
    Inventors: David Burdick Berman, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
  • Publication number: 20230363635
    Abstract: A method of localizing a target anatomy involves advancing a ureteroscope to a target calyx of a kidney of a patient through at least a portion of a urinary tract of the patient, determining a positional offset between one or more position sensors associated with the ureteroscope and a target papilla of the kidney that is at least partially exposed within the target calyx, and determining a percutaneous access target based at least in part on one or more of a present position of the one or more position sensors or the positional offset.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Inventors: Elif AYVALI, Menglong YE, Bulat IBRAGIMOV, David Burdick BERMAN
  • Patent number: 11786316
    Abstract: Certain aspects relate to a medical system that includes a robotically controllable field generator and an instrument guide. The instrument guide may guide a percutaneously insertable instrument along an insertion axis. The instrument guide may also be positioned on an electromagnetic (EM) field generator, where the EM field generator can generate an EM field. A first robotic arm may be coupled to the EM field generator and it may move the EM field generator and the instrument guide. The system then determines: an EM target positioned within a patient, and a registration that maps positions within an EM coordinate frame associated with the EM field to positions within a robotic coordinate frame. The system may also determine, based on the registration, a position of the EM target within the robotic coordinate frame. Based on the position of the EM target within the robotic coordinate frame, move the first robotic arm may move to align the insertion axis of the instrument guide with the EM target.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: October 17, 2023
    Assignee: Auris Health, Inc.
    Inventors: Christopher Sramek, Elif Ayvali, David Burdick Berman
  • Publication number: 20230270505
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Application
    Filed: February 13, 2023
    Publication date: August 31, 2023
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude
  • Patent number: 11737663
    Abstract: Processes of localizing target papillas of renal anatomy involve advancing a ureteroscope to a target calyx of a kidney of a patient through at least a portion of a urinary tract of the patient, determining a positional offset between one or more position sensors associated with the ureteroscope and a target papilla of the kidney that is at least partially exposed within the target calyx, and determining a percutaneous access target based at least in part on one or more of a present position of the one or more position sensors and the offset.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: August 29, 2023
    Assignee: Auris Health, Inc.
    Inventors: Elif Ayvali, Menglong Ye, Bulat Ibragimov, David Burdick Berman
  • Publication number: 20230210604
    Abstract: A positioning system includes a group of positioning devices including a first device comprising a first positioning source associated with a first positioning modality, the first positioning source being configured to view a first field, a second device comprising a second positioning source associated with a second positioning modality that is of a different type than the first positioning modality, the second positioning source being configured to view a second field, a third device comprising one or more first markers detectable within the first field using the first positioning modality, and a fourth device comprising one or more second markers detectable within the second field using the second positioning modality. A linking structure physically links two of the group of positioning devices to one another in a fixed, rigid relative position and orientation.
    Type: Application
    Filed: December 16, 2022
    Publication date: July 6, 2023
    Inventors: David Burdick BERMAN, Elif AYVALI, Christopher K. SRAMEK
  • Patent number: 11576730
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: February 14, 2023
    Assignee: Auris Health, Inc.
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude
  • Publication number: 20230042618
    Abstract: Systems and methods for electromagnetic distortion detection are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate an EM sensor signal in response to detection of the EM field. The system may also include a processor configured to calculate a baseline value of a metric indicative of a position of the EM sensor at a first time and calculate an updated value of the metric during a time period after the first time. The processor may be further configured to determine that a difference between the updated value and the baseline value is greater than a threshold value and determine that the EM field has been distorted in response to the difference being greater than the threshold value.
    Type: Application
    Filed: July 25, 2022
    Publication date: February 9, 2023
    Applicant: Auris Health, Inc.
    Inventors: David Burdick Berman, Christopher K. Sramek, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
  • Patent number: 11553967
    Abstract: Systems and methods for electromagnetic field generator alignment are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate, when positioned in a working volume of the EM field, one or more EM sensor signals based on detection of the EM field, the EM sensor configured for placement on a patient. The system may also include a processor and a memory storing computer-executable instructions to cause the processor to: determine a position of the EM sensor with respect to the field generator based on the one or more EM sensor signals, encode a representation of the position of the EM sensor with respect to the working volume of the EM field, and provide the encoded representation of the position to a display configured to render encoded data.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: January 17, 2023
    Assignee: Auris Health, Inc.
    Inventors: David Burdick Berman, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
  • Patent number: 11395703
    Abstract: Systems and methods for electromagnetic distortion detection are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate an EM sensor signal in response to detection of the EM field. The system may also include a processor configured to calculate a baseline value of a metric indicative of a position of the EM sensor at a first time and calculate an updated value of the metric during a time period after the first time. The processor may be further configured to determine that a difference between the updated value and the baseline value is greater than a threshold value and determine that the EM field has been distorted in response to the difference being greater than the threshold value.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: July 26, 2022
    Assignee: Auris Health, Inc.
    Inventors: David Burdick Berman, Christopher K. Sramek, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
  • Publication number: 20220061927
    Abstract: Certain aspects relate to systems with robotically controllable field generators and applications thereof. In one application, a robotic medical system, comprising a first robotic arm coupled to an electromagnetic (EM) field generator configured to generate an EM field, an EM sensor, and a processor. The processor may be configured to transmit a command to the first robotic arm to cause movement of the EM field generator along a robotic trajectory while the EM sensor remains at a location. An EM sensor trajectory of the EM sensor within the EM field corresponding to a period of time in which the EM field generator moved along the robotic trajectory may be detected. The robotic trajectory and the EM sensor trajectory may be analyzed to determine a difference between the robotic trajectory and the EM sensor trajectory; and EM distortion at the location may be detected comparing the difference and a threshold.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Publication number: 20220061926
    Abstract: Certain aspects relate to a medical system that includes a robotically controllable field generator and an instrument guide. The instrument guide may guide a percutaneously insertable instrument along an insertion axis. The instrument guide may also be positioned on an electromagnetic (EM) field generator, where the EM field generator can generate an EM field. A first robotic arm may be coupled to the EM field generator and it may move the EM field generator and the instrument guide. The system then determines: an EM target positioned within a patient, and a registration that maps positions within an EM coordinate frame associated with the EM field to positions within a robotic coordinate frame. The system may also determine, based on the registration, a position of the EM target within the robotic coordinate frame. Based on the position of the EM target within the robotic coordinate frame, move the first robotic arm may move to align the insertion axis of the instrument guide with the EM target.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Publication number: 20220061924
    Abstract: Certain aspects relate to systems with robotically controllable field generators and applications thereof. For example, a robotic medical system may include a first robotic arm that is configured to couple to an electromagnetic (EM) field generator. The first robotic arm be capable of moving the EM field generator. The robotic medical system may also include one or more processors. The processors may determine an EM position of an EM sensor within the EM field in an EM coordinate frame associated with the EM field generator. The processors also determine a position of the EM field generator in a robotic coordinate frame associated with the first robotic arm. The processors determine a registration between the EM coordinate frame and the robotic coordinate frame based on the position of the EM field generator. Based on the registration, the processors may determine a position of the EM sensor in the robotic coordinate frame.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Publication number: 20220061925
    Abstract: Certain aspects relate to systems with robotically controllable field generators and applications thereof. A robotic medical system may include a robotic arm coupled to an electromagnetic (EM) field generator configured to generate an EM field, and the first robotic arm may be configured to move the EM field generator. The medical system may also include a medical instrument configured for insertion into a patient. The medical instrument may comprise an EM sensor and one or more processors. The processors may: determine a position of the EM sensor within the EM field; and adjust a position of the EM field generator by commanding movement of the first robotic arm based on the determined position of the EM sensor.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Patent number: 11254323
    Abstract: Localization error monitoring using vehicle state information is described. A computing system associated with a vehicle may determine a current state of the vehicle, such as a location, position, orientation, velocity, acceleration, or the like. The vehicle computing system may determine one or more metrics associated with the state of the vehicle. The metrics may include a variance associated with the state, a residual associated with a measurement corresponding to the state, or a correction factor applied to correct an input error. The computing system may determine whether the metric exceeds a threshold value. Based on a threshold exceedance, the computing system may determine one or more errors associated with a state of the vehicle. The vehicle computing system may control the vehicle based on the one or more errors.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 22, 2022
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, David Burdick Berman, Michael Carsten Bosse, Guillermo Duenas Arana, Anne-Claire Elisabeth Marie Le Hénaff, Francesco Papi, Brice Rebsamen
  • Publication number: 20210298590
    Abstract: Processes of localizing target papillas of renal anatomy involve advancing a ureteroscope to a target calyx of a kidney of a patient through at least a portion of a urinary tract of the patient, determining a positional offset between one or more position sensors associated with the ureteroscope and a target papilla of the kidney that is at least partially exposed within the target calyx, and determining a percutaneous access target based at least in part on one or more of a present position of the one or more position sensors and the offset.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 30, 2021
    Inventors: Elif AYVALI, Menglong YE, Bulat IBRAGIMOV, David Burdick BERMAN
  • Publication number: 20210276577
    Abstract: Localization error monitoring using vehicle state information is described. A computing system associated with a vehicle may determine a current state of the vehicle, such as a location, position, orientation, velocity, acceleration, or the like. The vehicle computing system may determine one or more metrics associated with the state of the vehicle. The metrics may include a variance associated with the state, a residual associated with a measurement corresponding to the state, or a correction factor applied to correct an input error. The computing system may determine whether the metric exceeds a threshold value. Based on a threshold exceedance, the computing system may determine one or more errors associated with a state of the vehicle. The vehicle computing system may control the vehicle based on the one or more errors.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 9, 2021
    Inventors: Derek Adams, David Burdick Berman, Michael Carsten Bosse, Guillermo Duenas Arana, Anne-Claire Elisabeth Marie Le Hénaff, Francesco Papi, Brice Rebsamen
  • Publication number: 20210161603
    Abstract: Systems and methods for electromagnetic field generator alignment are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate, when positioned in a working volume of the EM field, one or more EM sensor signals based on detection of the EM field, the EM sensor configured for placement on a patient. The system may also include a processor and a memory storing computer-executable instructions to cause the processor to: determine a position of the EM sensor with respect to the field generator based on the one or more EM sensor signals, encode a representation of the position of the EM sensor with respect to the working volume of the EM field, and provide the encoded representation of the position to a display configured to render encoded data.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 3, 2021
    Inventors: David Burdick Berman, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
  • Publication number: 20210137609
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude