Patents by Inventor David BURKLAND

David BURKLAND has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11712559
    Abstract: Wireless treatment of arrhythmias. At least some of the example embodiments are methods including: charging a capacitor of a first microchip device abutting heart tissue, the charging by harvesting ambient energy; charging a capacitor of a second microchip device abutting the heart tissue, the charging of the capacitor of the second microchip device by harvesting ambient energy; sending a command wirelessly from a communication device outside the rib cage to the microchip devices; applying electrical energy to the heart tissue by the first microchip device responsive to the command, the electrical energy applied from the capacitor of the first microchip device; and applying electrical energy to the heart tissue by the second microchip device responsive to the command to the second microchip device, the electrical energy applied from the capacitor of the second microchip device.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 1, 2023
    Assignees: William Marsh Rice University, Texas Heart Institute, Baylor College of Medicine
    Inventors: Yuxiang Sun, Aydin Babakhani, Mehdi Razavi, David Burkland, Brian Greet, Mathews John, Hongming Lyu
  • Publication number: 20220125476
    Abstract: A surgical needle is configured to detect whether a distal tip of the surgical needle perforates or ends up in an undesirable location, or detect whether the distal tip of the surgical needle has accessed a desired location. The surgical needle includes a hub and a body connected to the hub. The body has a hollow core and includes a sharp-pointed tip at a distal end. A first electrode is formed by the sharp-pointed tip of the body. At least a second electrode is provided around the body. The first and second electrodes are connected to a wired connector that can be plugged into an external sensing system. The external sensing system can monitor impedance, electrical parameters, or other parameters.
    Type: Application
    Filed: February 6, 2020
    Publication date: April 28, 2022
    Inventors: ANAND GANAPATHY, DAVID BURKLAND, ALLISON POST, BRIAN GREET, MEHDI RAZAVI, MATHEWS JOHN
  • Publication number: 20210339017
    Abstract: Wireless treatment of arrhythmias. At least some of the example embodiments are methods including: charging a capacitor of a first microchip device abutting heart tissue, the charging by harvesting ambient energy; charging a capacitor of a second microchip device abutting the heart tissue, the charging of the capacitor of the second microchip device by harvesting ambient energy; sending a command wirelessly from a communication device outside the rib cage to the microchip devices; applying electrical energy to the heart tissue by the first microchip device responsive to the command, the electrical energy applied from the capacitor of the first microchip device; and applying electrical energy to the heart tissue by the second microchip device responsive to the command to the second microchip device, the electrical energy applied from the capacitor of the second microchip device.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 4, 2021
    Applicants: WILLIAM MARSH RICE UNIVERSITY, TEXAS HEART INSTITUTE, BAYLOR COLLEGE OF MEDICINE
    Inventors: Yuxiang SUN, Aydin BABAKHANI, Mehdi RAZAVI, David BURKLAND, Brian GREET, Mathews JOHN, Hongming LYU
  • Patent number: 11071857
    Abstract: Wireless treatment of arrhythmias. At least some of the example embodiments are methods including: charging a capacitor of a first microchip device abutting heart tissue, the charging by harvesting ambient energy; charging a capacitor of a second microchip device abutting the heart tissue, the charging of the capacitor of the second microchip device by harvesting ambient energy; sending a command wirelessly from a communication device outside the rib cage to the microchip devices; applying electrical energy to the heart tissue by the first microchip device responsive to the command, the electrical energy applied from the capacitor of the first microchip device; and applying electrical energy to the heart tissue by the second microchip device responsive to the command to the second microchip device, the electrical energy applied from the capacitor of the second microchip device.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: July 27, 2021
    Assignees: William Marsh Rice University, Baylor College of Medicine, Texas Heart Institute
    Inventors: Yuxiang Sun, Aydin Babakhani, Mehdi Razavi, David Burkland, Brian Greet, Mathews John, Hongming Lyu
  • Publication number: 20200129086
    Abstract: A surgical instrument includes an impedance sensing system for monitoring the position of the tip of the surgical instrument relative to the pericardial space. The surgical instrument consists of a guidewire or needle including a conductive core terminating at a distal tip of the guidewire or needle. The distal tip has a conductive surface exposed to patient tissues and/or fluids. The impedance sensing system includes a first electrode formed by the exposed surface of the guidewire or needle, and at least a second electrode isolated from the conductive core of the guidewire or needle. The second electrode may be formed on an outer surface of the guidewire or needle, or may be a pad electrode applied to the patient skin. The impedance sensing system also includes an impedance analyzer for measuring impedance and phase using one or more frequencies.
    Type: Application
    Filed: March 19, 2018
    Publication date: April 30, 2020
    Inventors: Anand GANAPATHY, David BURKLAND, Mathews JOHN, Brian GREET, Mehdi RAZAVI
  • Publication number: 20190314077
    Abstract: Catheter ablation systems are used to isolate the Left Atrial Appendage (“LAA”), or portions of the LAA, by using balloons. The systems deliver an ablation fluid such as alcohol in order to destroy the LAA tissue isolated between the balloons, deliver saline to dilute the ablation fluid, and remove excess fluid and particulates by suction to prevent excess residual alcohol from remaining in the LAA.
    Type: Application
    Filed: April 11, 2019
    Publication date: October 17, 2019
    Inventors: Mehdi Razavi, Elaine Chinn, Charlene Morrison, Ryan Oatman, Ashley Rook, Blake Smith, Anand Ganapathy, Mathews John, David Burkland, Brian Greet
  • Publication number: 20190314607
    Abstract: A catheter system includes a head including ports, a tail including conduits, and a medical balloon located between the head and the tail. Each conduit is connected to one of the ports. The medical balloon comprises ridges located around a circumference of the medical balloon. One or more sensors are located in the conduits. The catheter system can be used for ablation of the left atrial appendage using an ablation agent. The catheter system is capable of sealing the left atrial appendage, administering the ablation agent, delivering rinsing fluid into the sealed cavity, and extracting liquid from the sealed cavity.
    Type: Application
    Filed: April 11, 2019
    Publication date: October 17, 2019
    Inventors: Mehdi Razavi, Mathews John, Anand Ganapathy, Manuel Andres Gutierrez, Vincent Ngo, Loren Chane Sladek, Brian Greet, David Burkland
  • Publication number: 20190224476
    Abstract: Wireless treatment of arrhythmias. At least some of the example embodiments are methods including: charging a capacitor of a first microchip device abutting heart tissue, the charging by harvesting ambient energy; charging a capacitor of a second microchip device abutting the heart tissue, the charging of the capacitor of the second microchip device by harvesting ambient energy; sending a command wirelessly from a communication device outside the rib cage to the microchip devices; applying electrical energy to the heart tissue by the first microchip device responsive to the command, the electrical energy applied from the capacitor of the first microchip device; and applying electrical energy to the heart tissue by the second microchip device responsive to the command to the second microchip device, the electrical energy applied from the capacitor of the second microchip device.
    Type: Application
    Filed: August 22, 2017
    Publication date: July 25, 2019
    Applicants: WILLIAM MARSH RICE UNIVERSITY, TEXAS HEART INSTITUTE, BAYLOR COLLEGE OF MEDICINE
    Inventors: Yuxiang SUN, Aydin BABAKHANI, Mehdi RAZAVI, David BURKLAND, Brian GREET, Mathews JOHN, Hongming LYU