Patents by Inventor David C. Dunand

David C. Dunand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240082912
    Abstract: This invention in one aspect relates to an iron-based foam usable for an electrochemical device, comprising a composition comprising iron and a refractory element processed to form the iron-based foam having a hierarchical porous structure with self-assembled channels for gas flow reactions and internal space to accommodate volumetric changes on oxidation.
    Type: Application
    Filed: September 12, 2023
    Publication date: March 14, 2024
    Inventors: Jacob Benjamin Mack, Samuel Mark Pennell, David C. Dunand
  • Publication number: 20230095011
    Abstract: A method of forming an aluminum alloy component including melting and solidifying an aluminum alloy, solution treating the aluminum alloy, and heat treating the aluminum alloy. The aluminum alloy includes scandium, zirconium, erbium, silicon, at least one of molybdenum and tungsten, manganese and the balance aluminum and incidental impurities. The concentration of the alloying elements, in atom %, is greater than 0.0 and less than or equal to 0.15 scandium, greater than 0.0 and less than or equal to 0.35 zirconium, greater than 0.0 and less than or equal to 0.15 erbium, greater than 0.0 and less than or equal to 0.2 silicon, greater than 0.0 and less or equal to 0.75 molybdenum when included, greater than 0.0 and less than or equal to 0.35 tungsten when included.
    Type: Application
    Filed: July 11, 2022
    Publication date: March 30, 2023
    Applicants: Ford Global Technologies, LLC, Northwestern University
    Inventors: James M. Boileau, Bita Ghaffari, David N. Seidman, David C. Dunand, Anthony De Luca
  • Publication number: 20230083886
    Abstract: Methods of treating metal nanocrystals are provided. In embodiments, such a method comprises exposing metal nanocrystals comprising a metal and characterized by at least one twinning boundary therein, to a plating solution comprising a reducing agent and coating metal cations comprising a different metal, under conditions to form a coating of the different metal on surfaces of the metal nanocrystals via electroless deposition by chemical reduction of the coating metal cations, thereby providing coated metal nanocrystals. Methods of forming bulk nanostructured metal alloys from the coated metal nanocrystals are also provided.
    Type: Application
    Filed: September 6, 2022
    Publication date: March 16, 2023
    Inventors: Luke Clyde Oak Prestowitz, Jiaxing Huang, David C. Dunand
  • Publication number: 20220267884
    Abstract: This invention discloses a series of low-cost, castable, weldable, brazeable and heat-treatable aluminum alloys based on modifications of aluminum-manganese-based alloys, which turn all the non-heat treatable Mn-containing aluminum alloys into heat treatable alloys with high-strength, ductility, thermal stability, and resistance to creep, coarsening and recrystallization. These alloys inherit the excellent corrosion resistance of the Al—Mn-based alloys and can be utilized in high temperature, high stress and a variety of other applications. The modifications are made through microalloying with one or any combinations of tin, indium, antimony and bismuth at an impurity level of less than 0.02 at. %, which creates nanoscale ?-Al(Mn,TM)Si precipitates with a cubic structure (wherein TM is one or more of transition metals, and Mn is the main element) in an Al(f.c.c.)-matrix with a mean radius of about 25 nm and a relatively high volume fraction of about 2%.
    Type: Application
    Filed: February 14, 2022
    Publication date: August 25, 2022
    Inventors: Amir Rezaei Farkoosh, David C. Dunand, David N. Seidman
  • Patent number: 11408061
    Abstract: A high temperature creep-resistant aluminum alloy microalloyed with manganese and molybdenum and/or tungsten is provided. The aluminum alloy includes scandium, zirconium, erbium, silicon, at least one of molybdenum and tungsten, manganese and the balance aluminum and incidental impurities. The concentration of the alloying elements, in atom %, is greater than 0.0 and less than or equal to 0.15 scandium, greater than 0.0 and less than or equal to 0.35 zirconium, greater than 0.0 and less than or equal to 0.15 erbium, greater than 0.0 and less than or equal to 0.2 silicon, greater than 0.0 and less or equal to 0.75 molybdenum when included, greater than 0.0 and less than or equal to 0.35 tungsten when included, and greater than 0.0 and less than or equal to 1.5 manganese. And the total concentration of Zr+Er+Sc is greater than or equal to 0.1.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: August 9, 2022
    Assignees: Ford Global Technologies, LLC, Northwestern University
    Inventors: Anthony De Luca, David N. Seidman, David C. Dunand, James M. Boileau, Bita Ghaffari
  • Publication number: 20210207255
    Abstract: A cobalt based superalloy and a method of producing the same. The superalloy includes a nominal composition comprising at least cobalt, aluminum, Z and vanadium, Z being at least one of tantalum and niobium, processed such that the superalloy comprises gamma and gamma-prime phases with stable gamma+gamma-prime microstructures.
    Type: Application
    Filed: May 22, 2019
    Publication date: July 8, 2021
    Inventors: David C. DUNAND, Fernando Reyes TIRADO
  • Publication number: 20210095365
    Abstract: A high temperature creep-resistant aluminum alloy microalloyed with manganese and molybdenum and/or tungsten is provided. The aluminum alloy includes scandium, zirconium, erbium, silicon, at least one of molybdenum and tungsten, manganese and the balance aluminum and incidental impurities. The concentration of the alloying elements, in atom %, is greater than 0.0 and less than or equal to 0.15 scandium, greater than 0.0 and less than or equal to 0.35 zirconium, greater than 0.0 and less than or equal to 0.15 erbium, greater than 0.0 and less than or equal to 0.2 silicon, greater than 0.0 and less or equal to 0.75 molybdenum when included, greater than 0.0 and less than or equal to 0.35 tungsten when included, and greater than 0.0 and less than or equal to 1.5 manganese. And the total concentration of Zr+Er+Sc is greater than or equal to 0.1.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Applicants: Ford Global Technologies, LLC, Northwestern University
    Inventors: Anthony De Luca, David N. Seidman, David C. Dunand, James M. Boileau, Bita Ghaffari
  • Patent number: 10260486
    Abstract: A system may include an actuation member having a first end and a second end. A length of the actuation member is greater than a width of the actuation member. The length extends from the first end to the second end along a longitudinal axis when the actuation member is undeformed. The actuation member may include a magnetic shape memory alloy. The system may further include an anchor retaining the first end of the actuation member. The second end of the actuation member may be free to move laterally to the longitudinal axis in response to a deformation of the actuation member. The system may also include a magnetic field source in proximity to the actuation member. The magnetic field source may be configurable to alter a magnetic field applied to the actuation member to adjust the extent of deformation of the actuation member.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 16, 2019
    Assignee: BOISE STATE UNIVERSITY
    Inventors: Peter Mullner, David C. Dunand, Nikole J. Kucza, Peiqi Zheng
  • Patent number: 9969905
    Abstract: Certain aspects of the invention provides a transient liquid phase (TLP) bonding structure, including Ni based alloys and a TLP bonded layer formed by pack cementation on the Ni based alloys using a pack composition. In one embodiment, the pack composition includes 57 wt. % of aluminum oxide powder, 30 wt. % of Ti powder, 10 wt. % of Ni-50 wt. % Al alloy powder and 3 wt. % of ammonium chloride powder. The Ni based alloys may be Ni-20 wt. % Cr alloys. In certain embodiments, pack cementation is performed on the Ni based alloys under argon for an hour using the pack composition to form a coating. Then the structure is sonicated in acetone for 2 hours, and then annealed under vacuum at about 1200° C. for 2 days to form the TLP bonding structure, which has a uniform ?? phase distribution with identical compositions and properties at its bonding regions.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: May 15, 2018
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: David C. Dunand, Dinc Erdeniz
  • Patent number: 9797030
    Abstract: An aluminum alloy including additions of scandium, zirconium, erbium and, optionally, silicon.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: October 24, 2017
    Assignees: The Boeing Company, Ford Global Technologies, LLC, Northwestern University
    Inventors: Christopher S. Huskamp, Christopher Booth-Morrison, David C. Dunand, David N. Seidman, James M. Boileau, Bita Ghaffari
  • Publication number: 20170058386
    Abstract: Aluminum-zirconium and aluminum-zirconium-lanthanide superalloys are described that can be used in high temperature, high stress and a variety of other applications. The lanthanide is preferably holmium, erbium, thulium or ytterbium, most preferably erbium. Also, methods of making the aforementioned alloys are disclosed. The superalloys, which have commercially-suitable hardness at temperatures above about 220° C., include nanoscale Al3Zr precipitates and optionally nanoscale Al3Er precipitates and nanoscale Al3(Zr,Er) precipitates that create a high-strength alloy capable of withstanding intense heat conditions. These nanoscale precipitates have a L12-structure in ?-Al(f.c.c.) matrix, an average diameter of less than about 20 nanometers (“nm”), preferably less than about 10 nm, and more preferably about 4-6 nm and a high number density, which for example, is larger than about 1021 m?3, of the nanoscale precipitates.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 2, 2017
    Applicants: NanoAL LLC, Northwestern University
    Inventors: Nhon Q. Vo, David N. Seidman, David C. Dunand
  • Patent number: 9551050
    Abstract: An aluminum alloy including additions of scandium, zirconium, erbium and, optionally, silicon.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 24, 2017
    Assignees: The Boeing Company, Ford Global Technologies, LLC, Northwestern University
    Inventors: Christopher S. Huskamp, Christopher Booth-Morrison, David C. Dunand, David N. Seidman, James M. Boileau, Bita Ghaffari
  • Publication number: 20170016101
    Abstract: An aluminum alloy including additions of scandium, zirconium, erbium and, optionally, silicon.
    Type: Application
    Filed: September 27, 2016
    Publication date: January 19, 2017
    Inventors: Christopher S. Huskamp, Christopher Booth-Morrison, David C. Dunand, David N. Seidman, James M. Boileau, Bita Ghaffari
  • Patent number: 9453272
    Abstract: Aluminum-zirconium and aluminum-zirconium-lanthanide superalloys are described that can be used in high temperature, high stress and a variety of other applications. The lanthanide is preferably holmium, erbium, thulium or ytterbium, most preferably erbium. Also, methods of making the aforementioned alloys are disclosed. The superalloys, which have commercially-suitable hardness at temperatures above about 220° C., include nanoscale Al3Zr precipitates and optionally nanoscale Al3Er precipitates and nanoscale Al3(Zr,Er) precipitates that create a high-strength alloy capable of withstanding intense heat conditions. These nanoscale precipitates have a L12-structure in ?-Al(f.c.c.) matrix, an average diameter of less than about 20 nanometers (“nm”), preferably less than about 10 nm, and more preferably about 4-6 nm and a high number density, which for example, is larger than about 1021 m?3, of the nanoscale precipitates.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: September 27, 2016
    Assignee: NanoAl LLC
    Inventors: Nhon Q Vo, David N Seidman, David C Dunand
  • Publication number: 20160265516
    Abstract: A system may include an actuation member having a first end and a second end. A length of the actuation member is greater than a width of the actuation member. The length extends from the first end to the second end along a longitudinal axis when the actuation member is undeformed. The actuation member may include a magnetic shape memory alloy. The system may further include an anchor retaining the first end of the actuation member. The second end of the actuation member may be free to move laterally to the longitudinal axis in response to a deformation of the actuation member. The system may also include a magnetic field source in proximity to the actuation member. The magnetic field source may be configurable to alter a magnetic field applied to the actuation member to adjust the extent of deformation of the actuation member.
    Type: Application
    Filed: March 11, 2016
    Publication date: September 15, 2016
    Inventors: PETER MULLNER, DAVID C. DUNAND, NIKOLE J. KUCZA, PEIQI ZHENG
  • Patent number: 9327448
    Abstract: Methods of forming three-dimensional metallic objects are provided. A metal oxide paste comprising metal oxide particles, a polymeric binder and an organic solvent is extruded through a tip to deposit sequential layers of the metal oxide paste on a substrate to form a three-dimensional metal oxide object. The three-dimensional metal oxide object is exposed to a reducing gas at a temperature and for a period of time sufficient to reduce and to sinter the metal oxide particles to form a three-dimensional metallic object. Depending upon the composition of the metal oxide paste, the three-dimensional metallic object may be composed of a single metal, a simple or complex metal-metal alloy, or a metal-ceramic composite.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: May 3, 2016
    Assignee: Northwestern University
    Inventors: Ramille N. Shah, Adam E. Jakus, David C. Dunand
  • Patent number: 9204966
    Abstract: A penile prosthesis is disclosed that can alternate between an erect and flaccid state based on the shape memory properties of an exoskeleton that is responsive to increases and decreases in temperature. The exoskeleton consists of a shape memory alloy, such as nitinol, which in the erect configuration can radially expand and resist axial loads and buckling forces during coitus. The shape memory alloy is temperature-tuned to undergo a change to an erect state under external application of heat and can revert to a flaccid state with cooling below resting penile temperature.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: December 8, 2015
    Assignee: Northwestern University
    Inventors: Brian V. Le, David C. Dunand, Kevin T. McVary, Alberto Colombo
  • Publication number: 20150259773
    Abstract: Aluminum-zirconium and aluminum-zirconium-lanthanide superalloys are described that can be used in high temperature, high stress and a variety of other applications. The lanthanide is preferably holmium, erbium, thulium or ytterbium, most preferably erbium. Also, methods of making the aforementioned alloys are disclosed. The superalloys, which have commercially-suitable hardness at temperatures above about 220° C., include nanoscale Al3Zr precipitates and optionally nanoscale Al3Er precipitates and nanoscale Al3(Zr,Er) precipitates that create a high-strength alloy capable of withstanding intense heat conditions. These nanoscale precipitates have a L12-structure in ?-Al(f.c.c.) matrix, an average diameter of less than about 20 nanometers (“nm”), preferably less than about 10 nm, and more preferably about 4-6 nm and a high number density, which for example, is larger than about 1021 m?3, of the nanoscale precipitates.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 17, 2015
    Inventors: Nhon Q. Vo, David N. Seidman, David C. Dunand
  • Publication number: 20150035209
    Abstract: Methods of forming three-dimensional metallic objects are provided. A metal oxide paste comprising metal oxide particles, a polymeric binder and an organic solvent is extruded through a tip to deposit sequential layers of the metal oxide paste on a substrate to form a three-dimensional metal oxide object. The three-dimensional metal oxide object is exposed to a reducing gas at a temperature and for a period of time sufficient to reduce and to sinter the metal oxide particles to form a three-dimensional metallic object. Depending upon the composition of the metal oxide paste, the three-dimensional metallic object may be composed of a single metal, a simple or complex metal-metal alloy, or a metal-ceramic composite.
    Type: Application
    Filed: August 1, 2014
    Publication date: February 5, 2015
    Inventors: Ramille N. Shah, Adam E. Jakus, David C. Dunand
  • Patent number: 8586194
    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 19, 2013
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, Cassie Witherspoon, David C. Dunand, Xuexi Zhang, Yuttanant Boonyongmaneerat