Patents by Inventor David C. Hacker

David C. Hacker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12208257
    Abstract: Aspects of the disclosure include a bio-electric stimulation probe assembly including a patch including a first aperture and also a guide socket including a grommet and a second aperture. The guide socket is positioned on the patch such that the first and second apertures are aligned. The assembly further includes a guide including a tip that is positioned within and rotatable within the grommet. A probe of the assembly having at least one electrode is interconnected with the guide and extends through the first and second apertures. The guide and guide socket are collectively arranged and configured so that the guide has three degrees of rotational freedom with respect to the grommet thus meaning the probe correspondingly has three degrees of rotational freedom with respect to the grommet. Methods of using stimulation probe assemblies are also disclosed.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: January 28, 2025
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Anirudhan Narasimhan, David C. Hacker, Kevin L. McFarlin, Gabriela A. Guillen
  • Publication number: 20240424289
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Application
    Filed: September 5, 2024
    Publication date: December 26, 2024
    Inventors: David C. Hacker, Maria-Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Publication number: 20240407692
    Abstract: A stimulation electrode assembly configured to be positioned relative to a patient for an operative procedure is disclosed. The stimulation electrode may be a connection or self-contained component to contact a portion of a nerve. The stimulation electrode may provide or receive a signal to and/or from the nerve to assist in testing integrity of the nerve.
    Type: Application
    Filed: August 19, 2024
    Publication date: December 12, 2024
    Inventors: Matthew L. Cantwell, Bryan L. Courtney, David C. Hacker, Kevin L. McFarlin
  • Publication number: 20240307686
    Abstract: A monitoring system may include a processor and display system for displaying results from the monitoring. A user may be in a sterile field away from the processor and display system and selected input devices. A controller may be physically connected to the monitoring system from the sterile field to allow the user to control the monitoring system.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventors: John R. Prisco, David C. Hacker, Matthew L. Cantwell, Anirudhan Narasimhan, Amber A. Katada
  • Publication number: 20240293062
    Abstract: A bipolar stimulation probe includes a first electrode, a second electrode, a control module, and switches. The control module is configured to stimulate nerve tissue of a patient by generating (i) a first output signal indicative of a first pulse to be output from the first electrode, and (ii) a second output signal indicative of a second pulse to be output from the second electrode. The first pulse and the second pulse are monophasic. The switches are configured to output from the bipolar stimulation probe (i) the first pulse on the first electrode based on the first output signal, and (ii) the second pulse on the second electrode based on the second output signal.
    Type: Application
    Filed: May 13, 2024
    Publication date: September 5, 2024
    Inventors: Kevin L. McFarlin, Bryan L. Courtney, David C. Hacker
  • Patent number: 12064249
    Abstract: A stimulation electrode assembly configured to be positioned relative to a patient for an operative procedure is disclosed. The stimulation electrode may be a connection or self-contained component to contact a portion of a nerve. The stimulation electrode may provide or receive a signal to and/or from the nerve to assist in testing integrity of the nerve.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: August 20, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventors: Matthew L. Cantwell, Bryan L Courtney, David C. Hacker, Kevin L McFarlin
  • Publication number: 20240238034
    Abstract: Concepts presented herein relate to an interface module that can be electrically coupled to an electrical stimulation generator, a radio frequency generator and an instrument. A selection module is coupled to the interface module and operates in a first mode to deliver electrical stimulation signals from the electrical stimulation generator to the instrument and in a second mode to deliver radio frequency signals from the radio frequency generator to the instrument.
    Type: Application
    Filed: April 1, 2024
    Publication date: July 18, 2024
    Inventors: Kevin Lee McFarlin, John C. Bruce, David C. Hacker, Robert Allen Tucker
  • Publication number: 20240197226
    Abstract: Stimulation and recording electrode assemblies that are particularly useful for Automatic Period Stimulation (APS). Such embodiments are compatible with nerve monitoring systems to provide continuous stimulation of a nerve during surgery. Certain embodiments include an electrode assembly having cuff including a body and two ears extending from the body. Within the body, at least one electrode is supported and connected to a lead wire assembly. The ears can be brought together to enlarge a gap in the body so that the electrode assembly can be fixated around a nerve. Other embodiments include an electrode assembly including first and second needle electrodes that each have a tip. A body is provided to interconnect the needle electrodes and can be manipulated to move the tips either toward or away from one another. Disclosed embodiments provide nerve monitoring and stimulation in cases where the nerve is only partially dissected.
    Type: Application
    Filed: March 1, 2024
    Publication date: June 20, 2024
    Inventors: Matthew L. Cantwell, David C. Hacker, John R. Prisco
  • Patent number: 11992679
    Abstract: A monitoring system may include a processor and display system for displaying results from the monitoring. A user may be in a sterile field away from the processor and display system and selected input devices. A controller may be physically connected to the monitoring system from the sterile field to allow the user to control the monitoring system.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: May 28, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventors: John R. Prisco, David C. Hacker, Matthew L. Cantwell, Anirudhan Narasimhan, Amber A. Katada
  • Patent number: 11980465
    Abstract: A bipolar stimulation probe including a first electrode, a second electrode, a control module, and switches. The control module is configured to stimulate nerve tissue of a patient by generating (i) a first output signal indicative of a first pulse to be output from the first electrode, and (ii) a second output signal indicative of a second pulse to be output from the second electrode. The first pulse and the second pulse are monophasic. The switches are configured to output from the bipolar stimulation probe (i) the first pulse on the first electrode based on the first output signal, and (ii) the second pulse on the second electrode based on the second output signal.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 14, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventors: Kevin L. McFarlin, Bryan L. Courtney, David C. Hacker
  • Patent number: 11950832
    Abstract: Concepts presented herein relate to an interface module that can be electrically coupled to an electrical stimulation generator, a radio frequency generator and an instrument. A selection module is coupled to the interface module and operates in a first mode to deliver electrical stimulation signals from the electrical stimulation generator to the instrument and in a second mode to deliver radio frequency signals from the radio frequency generator to the instrument.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: April 9, 2024
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Kevin Lee McFarlin, John C. Bruce, David C. Hacker, Robert Allen Tucker
  • Patent number: 11918363
    Abstract: Stimulation and recording electrode assemblies that are particularly useful for Automatic Period Stimulation (APS). Such embodiments are compatible with nerve monitoring systems to provide continuous stimulation of a nerve during surgery. Certain embodiments include an electrode assembly having cuff including a body and two ears extending from the body. Within the body, at least one electrode is supported and connected to a lead wire assembly. The ears can be brought together to enlarge a gap in the body so that the electrode assembly can be fixated around a nerve. Other embodiments include an electrode assembly including first and second needle electrodes that each have a tip. A body is provided to interconnect the needle electrodes and can be manipulated to move the tips either toward or away from one another. Disclosed embodiments provide nerve monitoring and stimulation in cases where the nerve is only partially dissected.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: March 5, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventors: Matthew L. Cantwell, David C. Hacker, John R. Prisco
  • Patent number: 11911607
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface and a first location configured to be positioned at the patient's vocal folds. A first electrode is formed on the exterior surface of the endotracheal tube substantially below the first location to receive EMG signals primarily from below the vocal folds. A second electrode is formed on the exterior surface of the endotracheal tube substantially above the first location to receive EMG signals primarily from above the vocal folds. The first and second electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: February 27, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventor: David C. Hacker
  • Patent number: 11890463
    Abstract: A method of implanting a lead includes inserting a needle through tissue near a chin of a patient and through a tongue of the patient, inserting an introducer through an opening created by the needle, and inserting the lead through the introducer, the lead comprising an elongated member and one or more electrodes in a distal portion of the elongated member such that the one or more electrodes are implantable proximate to one or more motor points of a protrusor muscle within the tongue of the patient, wherein inserting the lead comprises inserting the lead to have a shape of one of a helix, a compound helix, a wave shape, or saw-tooth shape, or to have a loop in the lead.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: February 6, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventors: Avram Scheiner, Patrick W. Kinzie, Randal C. Schulhauser, David C. Hacker
  • Patent number: 11850428
    Abstract: A system for treating obstructive sleep apnea (OSA) is described. The system may include a device having a size and shape selected to couple externally to a patient near a jaw of the patient. The device may be configured to receive at least one of a needle or an introducer for insertion into a tongue of the patient for lead placement of a lead for OSA treatment, and guide at least a portion of the at least one of the needle or introducer for insertion into the tongue of the patient.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: December 26, 2023
    Assignee: Medtronic Xomed, Inc.
    Inventors: Avram Scheiner, David C. Hacker
  • Publication number: 20230301596
    Abstract: Aspects of the disclosure relate to pledget stimulation/recording electrode assemblies that are particularly useful for automatic periodic stimulation. Embodiments are compatible with nerve monitoring systems to provide continuous stimulation of a nerve during surgery. Disclosed embodiments include an electrode assembly having one or more electrodes rotatably supported by and positioned within a pledget substrate. The flexible pledget substrate conforms and fixates to bioelectric tissue to secure the electrode assembly in position, wrapped around the target tissue. In some embodiments, the pledget substrate includes two bodies, each including at least one electrode, the two bodies being selectively separable so that the bodies can be repositioned with respect to one another. The electrode assembly further includes a lead wire assembly including at least one insulating jacket positioned around a wire core.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 28, 2023
    Inventors: Matthew L. CANTWELL, David C. HACKER, John R. PRISCO, Anirudhan NARASIMHAN
  • Patent number: 11672487
    Abstract: Aspects of the disclosure relate to pledget stimulation/recording electrode assemblies that are particularly useful for automatic periodic stimulation. Embodiments are compatible with nerve monitoring systems to provide continuous stimulation of a nerve during surgery. Disclosed embodiments include an electrode assembly having one or more electrodes rotatably supported by and positioned within a pledget substrate. The flexible pledget substrate conforms and fixates to bioelectric tissue to secure the electrode assembly in position, wrapped around the target tissue. In some embodiments, the pledget substrate includes two bodies, each including at least one electrode, the two bodies being selectively separable so that the bodies can be repositioned with respect to one another. The electrode assembly further includes a lead wire assembly including at least one insulating jacket positioned around a wire core.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: June 13, 2023
    Assignee: Medtronic Xomed, Inc.
    Inventors: Matthew L. Cantwell, David C. Hacker, John R. Prisco, Anirudhan Narasimhan
  • Publication number: 20220378351
    Abstract: Stimulation and recording electrode assemblies that are particularly useful for Automatic Period Stimulation (APS). Such embodiments are compatible with nerve monitoring systems to provide continuous stimulation of a nerve during surgery. Certain embodiments include an electrode assembly having cuff including a body and two ears extending from the body. Within the body, at least one electrode is supported and connected to a lead wire assembly. The ears can be brought together to enlarge a gap in the body so that the electrode assembly can be fixated around a nerve. Other embodiments include an electrode assembly including first and second needle electrodes that each have a tip. A body is provided to interconnect the needle electrodes and can be manipulated to move the tips either toward or away from one another. Disclosed embodiments provide nerve monitoring and stimulation in cases where the nerve is only partially dissected.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Applicant: Medtronic Xomed, Inc.
    Inventors: Matthew L. Cantwell, David C. Hacker, John R. Prisco
  • Patent number: 11497409
    Abstract: An evoked potential monitoring system including a control unit having stimulator circuitry and a probe assembly coupled to the control unit. The probe assembly includes a stimulus probe and a stimulator handpiece selectively coupled to the stimulus probe. The handpiece includes a handle, control circuitry, and a switch. The control circuitry is electrically coupled to the stimulator circuitry. The switch is electrically coupled to the control circuitry and extends to an exterior portion of the handle. In this regard, movement of the switch remotely controls the stimulator circuitry to continuously increment or decrement a stimulation energy level delivered to the stimulus probe over a series of discrete, incremental steps.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: November 15, 2022
    Assignee: Medtronic Xomed, Inc.
    Inventors: Peter P. Sterrantino, David C. Hacker, Bret M. Berry
  • Publication number: 20220347462
    Abstract: Aspects of the disclosure include a bio-electric stimulation probe assembly including a patch including a first aperture and also a guide socket including a grommet and a second aperture. The guide socket is positioned on the patch such that the first and second apertures are aligned. The assembly further includes a guide including a tip that is positioned within and rotatable within the grommet. A probe of the assembly having at least one electrode is interconnected with the guide and extends through the first and second apertures. The guide and guide socket are collectively arranged and configured so that the guide has three degrees of rotational freedom with respect to the grommet thus meaning the probe correspondingly has three degrees of rotational freedom with respect to the grommet. Methods of using stimulation probe assemblies are also disclosed.
    Type: Application
    Filed: July 14, 2022
    Publication date: November 3, 2022
    Applicant: MEDTRONIC XOMED, INC.
    Inventors: Anirudhan Narasimhan, David C. Hacker, Kevin L. McFarlin, Gabriela A. Guillen