Patents by Inventor David C. LaMont

David C. LaMont has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11267767
    Abstract: Aspects of the invention relate to improvements in the flexibility with which oxygen and hydrogen, for example from electrolysis, may be supplied to processes having both gasification and methanation steps, as well as improvements in how such processes may be operated in response to variations in carbonaceous feeds. Offsets, between the ideal quantity of hydrogen and the quantity available from a given source may be compensated for by adjusting one or more operations of the process, and in particular such operation(s) that ultimately impact the quantity of CO and/or CO2 available downstream of the gasifier for conversion to methane in an RNG product stream.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: March 8, 2022
    Assignee: Gas Technology Institute
    Inventors: Andrew Kramer, James Seaba, David C. LaMont
  • Publication number: 20210309586
    Abstract: Aspects of the invention relate to improvements in the flexibility with which oxygen and hydrogen, for example from electrolysis, may be supplied to processes having both gasification and methanation steps, as well as improvements in how such processes may be operated in response to variations in carbonaceous feeds. Offsets, between the ideal quantity of hydrogen and the quantity available from a given source may be compensated for by adjusting one or more operations of the process, and in particular such operation(s) that ultimately impact the quantity of CO and/or CO2 available downstream of the gasifier for conversion to methane in an RNG product stream.
    Type: Application
    Filed: January 4, 2021
    Publication date: October 7, 2021
    Inventors: Andrew KRAMER, James SEABA, David C. LaMont
  • Patent number: 9573823
    Abstract: A closed loop combustion system for the combustion of fuels using a molten metal oxide bed.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: February 21, 2017
    Assignee: PHILLIPS 66 COMPANY
    Inventors: David C. LaMont, James Seaba, Edward G. Latimer, Alexandru Platon
  • Patent number: 8973658
    Abstract: A method of recovering heat from hot produced fluids at SAGD facilities is described that utilizes wellpad steam generation such as Direct Steam Generators (DSG). Heated fluids produced by SAGD are used to preheat the water that is used to make steam for SAGD. Feedwater is conveniently preheated at the wellpads by the produced fluids, emulsions, and/or gases before feeding to the DSGs.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: March 10, 2015
    Assignee: ConocoPhillips Company
    Inventors: Scott Macadam, James P. Seaba, David C. LaMont
  • Patent number: 8656999
    Abstract: The present method produces treated water from a direct steam generator. The method begins by injecting water into a direct steam generator. The injected water is then vaporized with the direct steam generator to produce steam and an effluent stream. The combustible water impurities in the water are then combusted inside a chamber in the direct steam generator and the solid particles are removed from the effluent stream to produce a treated stream.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 25, 2014
    Assignee: ConocoPhillips Company
    Inventors: Edward G. Latimer, James P. Seaba, Thomas J. Wheeler, David C. LaMont
  • Patent number: 8602103
    Abstract: Methods and apparatus relate to recovering petroleum products from underground reservoirs. The recovering of the petroleum products relies on introduction of heat and solvent into the reservoirs. Supplying water and then solvent for hydrocarbons in direct contact with combustion of fuel and oxidant generates a stream suitable for injection into the reservoir in order to achieve such thermal and solvent based recovery.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 10, 2013
    Assignee: ConocoPhillips Company
    Inventors: David C. LaMont, James P. Seaba
  • Patent number: 8430947
    Abstract: A method of introducing flue gas, from a flue stack in a steam-assisted production facility, into a heat exchanger. The flue gas comprises boiler combustion products selected from at least one of commercial pipeline gas and produced gas. The method begins by cooling a portion of the water vapor in the flue gas in the heat exchanger to produce flue gas water. This flue gas water is then collected and removed as make-up water.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: April 30, 2013
    Assignee: ConocoPhillips Company
    Inventors: Edward G. Latimer, Christopher R. Copeland, Ryan K. Davis, James Scinta, Dale L. Embry, David C. Lamont, Charles J. Murray, Ryan D. Donahe
  • Publication number: 20130068458
    Abstract: The invention provides a method of recovering heat from hot produced fluids at SAGD facilities that utilize wellpad steam generation such as Direct Steam Generators (DSG).
    Type: Application
    Filed: March 2, 2012
    Publication date: March 21, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Scott Macadam, James P. Seaba, David C. LaMont
  • Patent number: 8387545
    Abstract: A method for introducing flue gas in a steam-assisted production facility into a vapor-liquid contactor. In this method the flue gas comprises boiler combustion products selected from at least one of commercial pipeline natural gas and produced gas. The flue gas is cooled with the vapor-liquid contactor to condense a portion of the water vapor in the flue gas to produce a water stream. The water stream is then recirculated and cooled in an air cooler to produce recirculating water exiting the bottom of the vapor-liquid contactor. A water slipstream is then taken off the recirculating water to be used as make-up water.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 5, 2013
    Assignee: ConocoPhillips Company
    Inventors: Edward G. Latimer, Christopher R. Copeland, Ryan K. Davis, James Scinta, Dale L. Embry, David C. Lamont, Charles J. Murray, Ryan D. Donahe
  • Patent number: 8371380
    Abstract: Methods and systems relate to generating a flow of steam and splitting the flow of steam to enable both its injection into a formation to assist in oil recovery and its introduction into a pathway where the steam is used for generating electricity and capturing carbon dioxide (CO2). At least part of the CO2 that is captured comes from burning of fuel used to generate the steam. Steam assisted gravity drainage requires the steam that is injected to have a higher pressure than the steam that is needed for CO2 capture. Exhaust steam from a steam turbine used to generate the electricity reduces pressure of the steam prior to use of the steam for capturing CO2.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: February 12, 2013
    Assignee: ConocoPhillips Company
    Inventors: Dale L. Embry, David C. LaMont, James P. Seaba, Kristin Ruth Anderson
  • Patent number: 8353343
    Abstract: Methods and apparatus relate to producing hydrocarbons. Injecting a fluid mixture of steam and carbon dioxide into a hydrocarbon bearing formation facilitates recovery of the hydrocarbons. Further, limiting amounts of non-condensable gases in the mixture may promote dissolving of the carbon dioxide into the hydrocarbons upon contact of the mixture with the hydrocarbons.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: January 15, 2013
    Assignee: ConocoPhillips Company
    Inventors: James P. Seaba, Thomas J. Wheeler, David C. LaMont, Edward G. Latimer
  • Publication number: 20120227964
    Abstract: Methods and apparatus relate to processing flue gas from oxy-fuel combustion. Steam generated without contact of the steam with the flue gas combines with the flue gas for injection into a formation to facilitate oil recovery from the formation. Fluids produced include the oil and carbon dioxide with a lower concentration of oxygen than present in the flue gas that is injected.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: ConocoPhillips Company
    Inventors: David C. LaMont, James P. Seaba, Thomas J. Wheeler, Edward G. Latimer
  • Publication number: 20110259586
    Abstract: The present method produces treated water from a direct steam generator. The method begins by injecting water into a direct steam generator. The injected water is then vaporized with the direct steam generator to produce steam and an effluent stream. The combustible water impurities in the water are then combusted inside a chamber in the direct steam generator and the solid particles are removed from the effluent stream to produce a treated stream.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 27, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Edward G. Latimer, James P. Seaba, Thomas J. Wheeler, David C. LaMont
  • Publication number: 20110120717
    Abstract: Methods and apparatus relate to recovering petroleum products from underground reservoirs. The recovering of the petroleum products relies on introduction of heat and solvent into the reservoirs. Supplying water and then solvent for hydrocarbons in direct contact with combustion of fuel and oxidant generates a stream suitable for injection into the reservoir in order to achieve such thermal and solvent based recovery.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 26, 2011
    Applicant: ConocoPhillips Company
    Inventors: David C. LaMont, James P. Seaba
  • Publication number: 20110117004
    Abstract: A closed loop combustion system for the combustion of fuels using a molten metal oxide bed.
    Type: Application
    Filed: October 22, 2010
    Publication date: May 19, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: David C. LAMONT, James SEABA, Edward G. LATIMER, Alexandru PLATON
  • Publication number: 20110067610
    Abstract: A method for introducing flue gas in a steam-assisted production facility into a vapor-liquid contactor. In this method the flue gas comprises boiler combustion products selected from at least one of commercial pipeline natural gas and produced gas. The flue gas is cooled with the vapor-liquid contactor to condense a portion of the water vapor in the flue gas to produce a water stream. The water stream is then recirculated and cooled in an air cooler to produce recirculating water exiting the bottom of the vapor-liquid contactor. A water slipstream is then taken off the recirculating water to be used as make-up water.
    Type: Application
    Filed: July 15, 2010
    Publication date: March 24, 2011
    Applicant: ConocoPhillips Company
    Inventors: Edward G. Latimer, Christopher R. Copeland, Ryan K. Davis, James Scinta, Dale L. Embry, David C. Lamont, Charles J. Murray, Ryan D. Donahe
  • Publication number: 20110011559
    Abstract: A method of introducing flue gas, from a flue stack in a steam-assisted production facility, into a heat exchanger. The flue gas comprises boiler combustion products selected from at least one of commercial pipeline gas and produced gas. The method begins by cooling a portion of the water vapor in the flue gas in the heat exchanger to produce flue gas water. This flue gas water is then collected and removed as make-up water.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 20, 2011
    Applicant: ConocoPhillips Company
    Inventors: Edward G. Latimer, Christopher R. Copeland, Ryan K. Davis, James Scinta, Dale L. Embry, David C. Lamont, Charles J. Murray, Ryan D. Donahe
  • Publication number: 20100230097
    Abstract: Methods and apparatus relate to producing hydrocarbons. Injecting a fluid mixture of steam and carbon dioxide into a hydrocarbon bearing formation facilitates recovery of the hydrocarbons. Further, limiting amounts of non-condensable gases in the mixture may promote dissolving of the carbon dioxide into the hydrocarbons upon contact of the mixture with the hydrocarbons.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 16, 2010
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: James P. Seaba, Thomas J. Wheeler, David C. LaMont, Edward G. Latimer
  • Publication number: 20100206565
    Abstract: Methods and systems relate to generating a flow of steam and splitting the flow of steam to enable both its injection into a formation to assist in oil recovery and its introduction into a pathway where the steam is used for generating electricity and capturing carbon dioxide (CO2). At least part of the CO2 that is captured comes from burning of fuel used to generate the steam. Steam assisted gravity drainage requires the steam that is injected to have a higher pressure than the steam that is needed for CO2 capture. Exhaust steam from a steam turbine used to generate the electricity reduces pressure of the steam prior to use of the steam for capturing CO2.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 19, 2010
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Dale L. Embry, David C. LaMont, James P. Seaba
  • Patent number: 7572429
    Abstract: A combined desulphurization and pre-reforming processing unit converts logistic fuels such as JP-5, JP-8, gasoline, and diesel with high sulfur content levels, into a mixture of hydrogen, methane, carbon monoxide, carbon dioxide, and water without any sulfur or higher hydrocarbons. The fuel is processed at lower temperatures with sulfur-resistant materials in order to break down all the heavy hydrocarbons into methane and carbon oxides while capturing the sulfur simultaneously. The resulting feed is passed to a methane reforming system to generate additional hydrogen with no effects of coking or sulfur poisoning on the reforming system. The unit itself operates in a cyclic manner in order to regenerate the bed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: August 11, 2009
    Assignee: Nu Element, Inc.
    Inventors: Michael K. Neylon, David C. LaMont, Karen M. Fleckner